Domain-Aware Ontology Matching

The inherent heterogeneity of datasets on the Semantic Web has created a need to interlink them, and several tools have emerged that automate this task. In this paper we are interested in what happens if we enrich these matching tools with knowledge of the domain of the ontologies. We explore how to express the notion of a domain in terms usable for an ontology matching tool, and we examine various methods to decide what constitutes the domain of a given dataset. We show how we can use this in a matching tool, and study the effect of domain knowledge on the quality of the alignment. We perform evaluations for two scenarios: Last.fm artists and UMLS medical terms. To quantify the added value of domain knowledge, we compare our domain-aware matching approach to a standard approach based on a manually created reference alignment. The results indicate that the proposed domain-aware approach indeed outperforms the standard approach, with a large effect on ambiguous concepts but a much smaller effect on unambiguous concepts.

[1]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[2]  Asunción Gómez-Pérez,et al.  Six challenges for the Semantic Web , 2002, KR 2002.

[3]  Amit P. Sheth,et al.  Ontology Alignment for Linked Open Data , 2010, SEMWEB.

[4]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[5]  Christian Bizer,et al.  Media Meets Semantic Web - How the BBC Uses DBpedia and Linked Data to Make Connections , 2009, ESWC.

[6]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[7]  Robert Isele,et al.  Learning linkage rules using genetic programming , 2011, OM.

[8]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[9]  Heiko Paulheim,et al.  Towards an automatic parameterization of ontology matching tools based on example mappings , 2011, OM.

[10]  Jérôme Euzenat,et al.  Ontology Matching: State of the Art and Future Challenges , 2013, IEEE Transactions on Knowledge and Data Engineering.

[11]  Philipp Cimiano,et al.  A Machine Learning Approach to Multilingual and Cross-Lingual Ontology Matching , 2011, SEMWEB.

[12]  Fausto Giunchiglia,et al.  Semantic Matching: Algorithms and Implementation , 2007, J. Data Semant..

[13]  Laura Hollink,et al.  Domain-aware Matching of Events to DBpedia , 2011, DeRiVE@ISWC.

[14]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[15]  Aditya Kalyanpur,et al.  Leveraging Community-Built Knowledge for Type Coercion in Question Answering , 2011, International Semantic Web Conference.

[16]  Juan-Zi Li,et al.  Cross-lingual knowledge linking across wiki knowledge bases , 2012, WWW.

[17]  Stefanos D. Kollias,et al.  A String Metric for Ontology Alignment , 2005, SEMWEB.

[18]  Amit P. Sheth,et al.  Contextual Ontology Alignment of LOD with an Upper Ontology: A Case Study with Proton , 2011, ESWC.

[19]  Enrico Motta,et al.  Exploring the Semantic Web as Background Knowledge for Ontology Matching , 2008, J. Data Semant..

[20]  Christian Bizer,et al.  DBpedia spotlight: shedding light on the web of documents , 2011, I-Semantics '11.

[21]  Jérôme Euzenat,et al.  A Survey of Schema-Based Matching Approaches , 2005, J. Data Semant..

[22]  Willem Robert van Hage,et al.  Sample Evaluation of Ontology-Matching Systems , 2007, EON.