On the spectral properties of L± in three dimensions

This paper is part of the radial asymptotic stability analysis of the ground state soliton for either the cubic nonlinear Schrödinger or Klein–Gordon equations in three dimensions. We demonstrate by a rigorous method that the linearized scalar operators which arise in this setting, traditionally denoted by L±, satisfy the gap property, at least over the radial functions. This means that the interval (0, 1] does not contain any eigenvalues of L± and that the threshold 1 is neither an eigenvalue nor a resonance. The gap property is required in order to prove scattering to the ground states for solutions starting on the centre-stable manifold associated with these states. This paper therefore provides the final instalment in the proof of this scattering property for the cubic Klein–Gordon equation in the radial case, see the recent theory of Nakanishi and the third author. The method developed here is quite general, and applicable to other spectral problems which arise in the theory of nonlinear equations.

[1]  Kenji Nakanishi,et al.  Invariant Manifolds and Dispersive Hamiltonian Evolution Equations , 2011 .

[2]  Gideon Simpson,et al.  Spectral analysis for matrix Hamiltonian operators , 2010, 1003.2474.

[3]  M. Stanislavova,et al.  On precise center stable manifold theorems for certain reaction–diffusion and Klein–Gordon equations , 2009 .

[4]  M. Beceanu A Critical Centre-Stable Manifold for the Schroedinger Equation in Three Dimensions , 2009 .

[5]  A. B. Datseff On the nonlinear schrödinger equation , 2009 .

[6]  M. Beceanu A Critical Centre-Stable Manifold for the Cubic Focusing Schroedinger Equation in Three Dimensions , 2009, 0902.1643.

[7]  Wilhelm Schlag,et al.  Stable manifolds for an orbitally unstable nonlinear Schrödinger equation , 2009 .

[8]  Peter W. Bates,et al.  Approximately invariant manifolds and global dynamics of spike states , 2008 .

[9]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[10]  Laurent Demanet,et al.  Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation , 2006 .

[11]  Wilhelm Schlag,et al.  Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension , 2006 .

[12]  W. Schlag,et al.  Stable manifolds for all monic supercritical NLS in one dimension , 2005, math/0501126.

[13]  Dmitry E. Pelinovsky,et al.  Spectra of positive and negative energies in the linearized NLS problem , 2005 .

[14]  W. Schlag,et al.  Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II , 2004, math/0504585.

[15]  W. Schlag Stable manifolds for an orbitally unstable NLS , 2004, math/0405435.

[16]  Dmitry Pelinovsky,et al.  Convergence of Petviashvili's Iteration Method for Numerical Approximation of Stationary Solutions of Nonlinear Wave Equations , 2004, SIAM J. Numer. Anal..

[17]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[18]  J. Fröhlich,et al.  Solitary Wave Dynamics in an External Potential , 2003, math-ph/0309053.

[19]  I. Rodnianski,et al.  Dispersive analysis of charge transfer models , 2003, math/0309112.

[20]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[21]  S. Cuccagna Stabilization of solutions to nonlinear Schrödinger equations , 2001 .

[22]  G. Perelman On the Formation of Singularities in Solutions of the Critical Nonlinear Schrödinger Equation , 2001 .

[23]  Peter W. Bates,et al.  Persistence of Overflowing Manifolds for Semiflow , 1999 .

[24]  F. Gesztesy,et al.  A Spectral Mapping Theorem and Invariant Manifolds for Nonlinear Schr , 1999, solv-int/9907017.

[25]  Peter W. Bates,et al.  Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space , 1998 .

[26]  C. E. Wayne,et al.  Invariant Manifolds for a Class of Dispersive, Hamiltonian, Partial Differential Equations , 1997 .

[27]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[28]  Vladimir S. Buslaev,et al.  On the stability of solitary waves for nonlinear Schr?odinger equations , 1995 .

[29]  Kevin McLeod,et al.  Uniqueness of Positive Radial Solutions of Δu + f(u) = 0 in ℝ n , II , 1993 .

[30]  A. Soffer,et al.  Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data , 1992 .

[31]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[32]  Michael I. Weinstein,et al.  Multichannel nonlinear scattering for nonintegrable equations , 1990 .

[33]  M. Grillakis,et al.  Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system , 1990 .

[34]  Peter W. Bates,et al.  Invariant Manifolds for Semilinear Partial Differential Equations , 1989 .

[35]  James Serrin,et al.  Uniqueness of positive radial solutions of Δu+f(u)=0 in ℝn , 1987 .

[36]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[37]  J. Shatah,et al.  Instability of nonlinear bound states , 1985 .

[38]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[39]  Jalal Shatah,et al.  Unstable ground state of nonlinear Klein-Gordon equations , 1985 .

[40]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[41]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, II existence of infinitely many solutions , 1983 .

[42]  J. Shatah Stable standing waves of nonlinear Klein-Gordon equations , 1983 .

[43]  P. Lions,et al.  Orbital stability of standing waves for some nonlinear Schrödinger equations , 1982 .

[44]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[45]  Arne Jensen,et al.  Spectral properties of Schrödinger operators and time-decay of the wave functions , 1979 .

[46]  R. Glassey On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1977 .

[47]  Walter A. Strauss,et al.  Existence of solitary waves in higher dimensions , 1977 .

[48]  D. Sattinger,et al.  Saddle points and instability of nonlinear hyperbolic equations , 1975 .

[49]  C. V. Coffman Uniqueness of the ground state solution for Δu−u+u3=0 and a variational characterization of other solutions , 1972 .

[50]  Leon W. Cohen,et al.  Conference Board of the Mathematical Sciences , 1963 .