Lithium Treatment Blocks Long-Term Synaptic Depression in the Striatum

[1]  P. Calabresi,et al.  Long-term synaptic depression in the striatum: physiological and pharmacological characterization , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  P. Calabresi,et al.  Long‐term Potentiation in the Striatum is Unmasked by Removing the Voltage‐dependent Magnesium Block of NMDA Receptor Channels , 1992, The European journal of neuroscience.

[3]  P. Calabresi,et al.  Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum , 1992, Neuroscience Letters.

[4]  P. Calabresi,et al.  Activation of quisqualate metabotropic receptors reduces glutamate and GABA-mediated synaptic potentials in the rat striatum , 1992, Neuroscience Letters.

[5]  S. Young,et al.  Presynaptic long‐term changes in excitability of the corticostriatal pathway , 1992, Neuroreport.

[6]  S. Nakanishi,et al.  Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGluRl, in transfected CHO cells , 1992, Neuron.

[7]  S. Nakanishi,et al.  A family of metabotropic glutamate receptors , 1992, Neuron.

[8]  W Singer,et al.  Intracellular injection of Ca2+ chelators blocks induction of long-term depression in rat visual cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[9]  I. Izquierdo Dopamine receptors in the caudate nucleus and memory processes. , 1992, Trends in pharmacological sciences.

[10]  D. Linden,et al.  Participation of postsynaptic PKC in cerebellar long-term depression in culture. , 1991, Science.

[11]  D. Overstreet,et al.  Clinical and biochemical aspects of depressive disorders: II. Transmitter/receptor theories , 1991, Synapse.

[12]  R. North,et al.  Membrane properties and synaptic responses of rat striatal neurones in vitro. , 1991, The Journal of physiology.

[13]  D. Lovinger Trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) decreases synaptic excitation in rat striatal slices through a presynaptic action , 1991, Neuroscience Letters.

[14]  U. Frey,et al.  Enhanced Sensitivity of “Metabotropic” Glutamate Receptors After Induction of Long‐Term Potentiation in Rat Hippocampus , 1991, Journal of neurochemistry.

[15]  G Bernardi,et al.  Involvement of GABA systems in feedback regulation of glutamate‐and GABA‐mediated synaptic potentials in rat neostriatum. , 1991, The Journal of physiology.

[16]  K. Shibuki,et al.  Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum , 1991, Nature.

[17]  C. Ragan,et al.  Lithium and the phosphoinositide cycle: an example of uncompetitive inhibition and its pharmacological consequences. , 1991, Trends in pharmacological sciences.

[18]  R. Nicoll,et al.  Mechanisms underlying long-term potentiation of synaptic transmission. , 1991, Annual review of neuroscience.

[19]  F. Crépel,et al.  Pairing of pre‐ and postsynaptic activities in cerebellar Purkinje cells induces long‐term changes in synaptic efficacy in vitro. , 1991, The Journal of physiology.

[20]  E. Kumamoto,et al.  Long-term potentiations in vertebrate synapses: a variety of cascades with common subprocesses , 1990, Progress in Neurobiology.

[21]  F. Crépel,et al.  Protein kinases, nitric oxide and long-term depression of synapses in the cerebellum. , 1990, Neuroreport.

[22]  D. Kendall,et al.  The effects of acute and chronic lithium treatment on pilocarpine‐stimulated phosphoinositide hydrolysis in mouse brain in vivo , 1990, British journal of pharmacology.

[23]  F. Crépel,et al.  Use‐dependent changes in synaptic efficacy in rat prefrontal neurons in vitro. , 1990, The Journal of physiology.

[24]  A. Graybiel Neurotransmitters and neuromodulators in the basal ganglia , 1990, Trends in Neurosciences.

[25]  G Bernardi,et al.  Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. , 1990, Journal of neurophysiology.

[26]  D. Surmeier,et al.  M1 Muscarinic Acetylcholine Receptor in Cultured Rat Neostriatum Regulates Phosphoinositide Hydrolysis , 1990, Journal of neurochemistry.

[27]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[28]  M. Berridge Inositol Trisphosphate, Calcium, Lithium, and Cell Signaling , 1989 .

[29]  J. Meldolesi,et al.  Muscarinic and Quisqualate Receptor‐Induced Phosphoinositide Hydrolysis in Primary Cultures of Striatal and Hippocampal Neurons. Evidence for Differential Mechanisms of Activation , 1989, Journal of neurochemistry.

[30]  W. Müller,et al.  Lithium discriminates between muscarinic receptor subtypes on guinea pig hippocampal neurons in vitro , 1989, Neuroscience Letters.

[31]  T. Sejnowski,et al.  Associative long-term depression in the hippocampus induced by hebbian covariance , 1989, Nature.

[32]  M. Ito,et al.  Long-term depression. , 1989, Annual review of neuroscience.

[33]  J. Bockaert,et al.  A new mechanism for glutamate receptor action: phosphoinositide hydrolysis , 1988, Trends in Neurosciences.

[34]  A Akaike,et al.  Muscarinic inhibition as a dominant role in cholinergic regulation of transmission in the caudate nucleus. , 1988, The Journal of pharmacology and experimental therapeutics.

[35]  A. Ashkenazi,et al.  Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes , 1988, Nature.

[36]  S. Snyder,et al.  Lithium blocks a phosphoinositide-mediated cholinergic response in hippocampal slices. , 1988, Science.

[37]  R. Belmaker,et al.  Lithium inhibits adrenergic and cholinergic increases in GTP binding in rat cortex , 1988, Nature.

[38]  T. Reader,et al.  Acute effects of lithium on dopaminergic responses: Iontophoretic studies in the rat visual cortex , 1988, Synapse.

[39]  G. Goodwin,et al.  A review of the biochemical and neuropharmacological actions of lithium , 1987, Psychological Medicine.

[40]  P. Calabresi,et al.  Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity , 1987, Neuroscience.

[41]  S. Cockcroft Polyphosphoinositide phosphodiesterase: regulation by a novel guanine nucleotide binding protein, Gp , 1987 .

[42]  B. Roth,et al.  Coupling of Inositol Phospholipid Metabolism with Excitatory Amino Acid Recognition Sites in Rat Hippocampus , 1986, Journal of neurochemistry.

[43]  J. Bockaert,et al.  Glutamate stimulates inositol phosphate formation in striatal neurones , 1985, Nature.

[44]  J. Aldenhoff,et al.  Lithium slows neuronal calcium regulation in the snail Helix pomatia , 1985, Neuroscience Letters.

[45]  M. Berridge Inositol trisphosphate and diacylglycerol as second messengers. , 1984, The Biochemical journal.

[46]  T. Kita,et al.  Passive electrical membrane properties of rat neostriatal neurons in an in vitro slice preparation , 1984, Brain Research.

[47]  Timothy J. Teyler,et al.  Long-term potentiation as a candidate mnemonic device , 1984, Brain Research Reviews.

[48]  P. Groves A theory of the functional organization of the neostriatum and the neostriatal control of voluntary movement , 1983, Brain Research Reviews.

[49]  M. Berridge,et al.  Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. , 1982, The Biochemical journal.

[50]  Masao Ito,et al.  Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells , 1982, The Journal of physiology.

[51]  R. Ebstein,et al.  The effect of lithium on noradrenaline-induced cyclic AMP accumulation in rat brain: inhibition after chronic treatment and absence of supersensitivity. , 1980, The Journal of pharmacology and experimental therapeutics.

[52]  P. Tyrer,et al.  An Extrapyramidal Syndrome after Lithium Therapy , 1980, British Journal of Psychiatry.

[53]  A. Geisler,et al.  Influence of lithium on dopamine-stimulated adenylate cyclase activity in rat brain. , 1978, Life sciences.

[54]  D. Tosteson,et al.  Lithium transport pathways in human red blood cells , 1978, The Journal of general physiology.

[55]  W. Bunney,et al.  Haloperidol-induced presynaptic dopamine supersensitivity is blocked by chronic lithium , 1978, Nature.

[56]  M. Schorderet Lithium inhibition of cyclic AMP accumulation induced by dopamine in isolated retinae of the rabbit. , 1977, Biochemical Pharmacology.

[57]  T. Teyler,et al.  Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice , 1976, Brain Research.

[58]  M. Sugimori,et al.  Monosynaptic inputs to caudate neurons identified by intracellular injection of horseradish peroxidase , 1976, Brain Research.

[59]  G. Simpson,et al.  Extrapyramidal side effects in lithium maintenance therapy. , 1976, The American journal of psychiatry.

[60]  L. Beaugé The interaction of lithium ions with the sodium‐potassium pump in frog skeletal muscle. , 1975, The Journal of physiology.

[61]  M. Blaustein The interrelationship between sodium and calcium fluxes across cell membranes. , 1974, Reviews of physiology, biochemistry and pharmacology.