Stochastic Optimal Growth with Unbounded Shock

This paper considers a neoclassical optimal growth problem where the shock that perturbs the economy in each time period is potentially unbounded on the state space. Sufficient conditions for existence, uniqueness and stability of equilibria are derived in terms of the primitives of the model using new techniques from the field of perturbed dynamical systems.

[1]  O. Hernández-Lerma,et al.  Further topics on discrete-time Markov control processes , 1999 .

[2]  R. A. Doney Introduction to Measure and Probability , 1967 .

[3]  J. Yahav,et al.  On Stochastic Models of Economic Growth , 1979 .

[4]  Stationary Equilibria in an Overlapping Generations Economy with Stochastic Production , 1993 .

[5]  R. Amir,et al.  A functional central limit theorem for equilibrium paths of economic dynamics , 2000 .

[6]  Danny Quah,et al.  Convergence empirics across economies with (some) capital mobility , 1996 .

[7]  O. Hernández-Lerma,et al.  Discrete-time Markov control processes , 1999 .

[8]  Asymptotic Stability of a Brock-Mirman Economy with Unbounded Shock , 2000 .

[9]  F. Ramsey,et al.  THE MATHEMATICAL THEORY OF SAVING , 1928 .

[10]  David Cass,et al.  Optimum Growth in an Aggregative Model of Capital Accumulation , 1965 .

[11]  J J Tyson,et al.  Cell growth and division: a deterministic/probabilistic model of the cell cycle , 1986, Journal of mathematical biology.

[12]  Nancy L. Stokey,et al.  Recursive methods in economic dynamics , 1989 .

[13]  M. Hashem Pesaran,et al.  Stochastic Growth Models and Their Econometric Implications , 1999 .

[14]  K. Yosida,et al.  Operator-Theoretical Treatment of Markoff's Process and Mean Ergodic Theorem , 1941 .

[15]  On the Existence of Steady State Measures for One Sector Growth Models with Uncertain Technology , 1972 .

[16]  A. Lasota,et al.  Globally asymptotic properties of proliferating cell populations , 1984, Journal of mathematical biology.

[17]  W. Fleming Book Review: Discrete-time Markov control processes: Basic optimality criteria , 1997 .

[18]  Joanna Tyrcha Asymptotic stability in a generalized probabilistic/deterministic model of the cell cycle , 1988, Journal of mathematical biology.

[19]  R. Amir A new look at optimal growth under uncertainty , 1997 .

[20]  E. Hopf The General Temporally Discrete Markoff Process , 1954 .

[21]  R. Mehra,et al.  Stochastic growth with correlated production shocks , 1983 .

[22]  Carl A. Futia INVARIANT DISTRIBUTIONS AND THE LIMITING BEHAVIOR OF MARKOVIAN ECONOMIC MODELS , 1982 .

[23]  Itzhak Zilcha,et al.  On optimal growth under uncertainty , 1975 .

[24]  E. Prescott,et al.  Stochastic Monotonicity and Stationary Distributions for Dynamic Economies , 1992 .

[25]  D. Duffie Stationary Markov Equilibria , 1994 .

[26]  Tjalling C. Koopmans,et al.  On the concept of optimal economic growth , 1963 .

[27]  Jerry R. Green,et al.  The Nature of Stochastic Equilibria , 1975 .

[28]  N. Krylov,et al.  Statistics and control of stochastic processes , 1985 .

[29]  Leonard J. Mirman The steady state behavior of a class of one sector growth models with uncertain technology , 1973 .

[30]  F. Smithies Linear Operators , 2019, Nature.

[31]  W. Brock,et al.  Global asymptotic stability results for multisector models of optimal growth under uncertainty when future utilities are discounted , 1978 .

[32]  M. Joshi,et al.  Some topics in nonlinear functional analysis , 1985 .

[33]  Paul Embrechts,et al.  Introduction to measure and probability , 1967 .

[34]  Itzhak Zilcha,et al.  Optimal growth in a stochastic environment: Some sensitivity and turnpike results , 1987 .

[35]  Michael C. Mackey,et al.  The statistical dynamics of recurrent biological events , 1992 .

[36]  J. F. C. Kingman,et al.  The ergodic theory of Markov processes , 1971, The Mathematical Gazette.

[37]  M. Mackey,et al.  Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .

[38]  Leonard J. Mirman,et al.  Optimal economic growth and uncertainty: The discounted case , 1972 .

[39]  S. Flåm,et al.  The Turnpike Property and the Central Limit Theorem in Stochastic Models of Economic Dynamics , 1997 .

[40]  J. Laitner The steady states of a stochastic decentralized growth model , 1981 .