Optimal linear identifying codes

Identifying codes can be used to locate malfunctioning processors. We say that a code C of length n is a linear (1,/spl les/l)-identifying code if it is a subspace of F/sub 2//sup n/ and for all X,Y/spl sube/F/sub 2//sup n/ such that |X|, |Y|/spl les/l and X/spl ne/Y, we have /spl cup//sub x/spl isin/X/(B(x)/spl cap/C)/spl ne//spl cup/y/spl isin/Y(B(y)/spl cap/C). Strongly (1,/spl les/l)-identifying codes are a variant of identifying codes. We determine the cardinalities of optimal linear (1,/spl les/l)-identifying and strongly (1,/spl les/l)-identifying codes in Hamming spaces of any dimension for locating any at most l malfunctioning processors.

[1]  Mark G. Karpovsky,et al.  On a New Class of Codes for Identifying Vertices in Graphs , 1998, IEEE Trans. Inf. Theory.

[2]  Gérard D. Cohen,et al.  Linear Codes with Covering Radius and Codimension , 2001 .

[3]  Simon Litsyn,et al.  Bounds on identifying codes , 2001, Discret. Math..

[4]  Iiro S. Honkala,et al.  On Codes Identifying Sets of Vertices in Hamming Spaces , 2000, Des. Codes Cryptogr..

[5]  Iiro S. Honkala,et al.  On strongly identifying codes , 2002, Discret. Math..

[6]  Tero Laihonen Optimal Codes for Strong Identification , 2002, Eur. J. Comb..

[7]  Tero Laihonen,et al.  Sequences of optimal identifying codes , 2002, IEEE Trans. Inf. Theory.