Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system.

[1]  J. Olzmann,et al.  The mammalian endoplasmic reticulum-associated degradation system. , 2013, Cold Spring Harbor perspectives in biology.

[2]  M. Brandeis,et al.  Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting , 2013, Molecular biology of the cell.

[3]  Chengchao Xu,et al.  Futile Protein Folding Cycles in the ER Are Terminated by the Unfolded Protein O-Mannosylation Pathway , 2013, Science.

[4]  X. Ji,et al.  A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. , 2013, Molecular cell.

[5]  A. Ciechanover,et al.  Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases. , 2013, Molecular cell.

[6]  J. Frydman,et al.  Principles of cotranslational ubiquitination and quality control at the ribosome. , 2013, Molecular cell.

[7]  J. Brodsky,et al.  Hsp70 Targets a Cytoplasmic Quality Control Substrate to the San1p Ubiquitin Ligase* , 2013, The Journal of Biological Chemistry.

[8]  M. K. Lemberg Sampling the membrane: function of rhomboid-family proteins. , 2013, Trends in cell biology.

[9]  M. Hochstrasser,et al.  N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates , 2013, Molecular biology of the cell.

[10]  R. Dohmen,et al.  Hsp70 nucleotide exchange factor Fes1 is essential for ubiquitin-dependent degradation of misfolded cytosolic proteins , 2013, Proceedings of the National Academy of Sciences.

[11]  Y. Reiss,et al.  Placing a Disrupted Degradation Motif at the C Terminus of Proteasome Substrates Attenuates Degradation without Impairing Ubiquitylation* , 2013, The Journal of Biological Chemistry.

[12]  B. Friguet,et al.  Deletion of the mitochondrial Pim1/Lon protease in yeast results in accelerated aging and impairment of the proteasome. , 2013, Free radical biology & medicine.

[13]  E. Miller,et al.  Secretory Protein Biogenesis and Traffic in the Early Secretory Pathway , 2013, Genetics.

[14]  R. Gardner,et al.  Substrate Recognition in Nuclear Protein Quality Control Degradation Is Governed by Exposed Hydrophobicity That Correlates with Aggregation and Insolubility* , 2013, The Journal of Biological Chemistry.

[15]  K. J. Wolfe,et al.  The Type II Hsp40 Sis1 Cooperates with Hsp70 and the E3 Ligase Ubr1 to Promote Degradation of Terminally Misfolded Cytosolic Protein , 2013, PloS one.

[16]  A. Ciechanover,et al.  The lysine48-based polyubiquitin chain proteasomal signal: not a single child anymore. , 2013, Angewandte Chemie.

[17]  Adam Frost,et al.  A Ribosome-Bound Quality Control Complex Triggers Degradation of Nascent Peptides and Signals Translation Stress , 2012, Cell.

[18]  Nadinath B. Nillegoda,et al.  Metazoan Hsp70 machines use Hsp110 to power protein disaggregation , 2012, The EMBO journal.

[19]  Hao Li,et al.  The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis , 2012, eLife.

[20]  P. Walter,et al.  Structural basis of the unfolded protein response. , 2012, Annual review of cell and developmental biology.

[21]  D. Ng,et al.  Biosynthetic mode can determine the mechanism of protein quality control. , 2012, Biochemical and biophysical research communications.

[22]  M. K. Lemberg,et al.  Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. , 2012, Molecular cell.

[23]  M. Molinari,et al.  Flagging and docking: dual roles for N-glycans in protein quality control and cellular proteostasis , 2012, Trends in Biochemical Sciences.

[24]  B. Bukau,et al.  Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation , 2012, The Journal of cell biology.

[25]  T. Sommer,et al.  Finding the will and the way of ERAD substrate retrotranslocation. , 2012, Current opinion in cell biology.

[26]  R. Gardner,et al.  Selective destruction of abnormal proteins by ubiquitin-mediated protein quality control degradation. , 2012, Seminars in cell & developmental biology.

[27]  E. Deuerling,et al.  Ribosome-associated chaperones as key players in proteostasis. , 2012, Trends in biochemical sciences.

[28]  M. Hochstrasser,et al.  Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase , 2012, The Journal of cell biology.

[29]  T. Mayor,et al.  The Yeast Ubr1 Ubiquitin Ligase Participates in a Prominent Pathway That Targets Cytosolic Thermosensitive Mutants for Degradation , 2012, G3: Genes | Genomes | Genetics.

[30]  J. Brodsky,et al.  The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. , 2012, Physiological reviews.

[31]  J. Buchner,et al.  The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. , 2012, Biochimica et biophysica acta.

[32]  O. Panasenko,et al.  The Ccr4--not complex. , 2012, Gene.

[33]  A. Friedler,et al.  Exposure of bipartite hydrophobic signal triggers nuclear quality control of Ndc10 at the endoplasmic reticulum/nuclear envelope , 2011, Molecular biology of the cell.

[34]  P. Walter,et al.  The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation , 2011, Science.

[35]  B. Bukau,et al.  Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae , 2011, The Journal of cell biology.

[36]  H. Ploegh,et al.  Protein quality control in the ER: balancing the ubiquitin checkbook. , 2011, Trends in cell biology.

[37]  K. Nagata,et al.  Protein folding and quality control in the ER. , 2011, Cold Spring Harbor perspectives in biology.

[38]  D. Wolf,et al.  Mnl2, a novel component of the ER associated protein degradation pathway. , 2011, Biochemical and biophysical research communications.

[39]  V. Measday,et al.  Hul5 HECT Ubiquitin Ligase Plays A Major Role in The Ubiquitylation and Turn Over of Cytosolic Misfolded Proteins , 2011, Nature Cell Biology.

[40]  D. Wolf,et al.  Yos9, a control protein for misfolded glycosylated and non‐glycosylated proteins in ERAD , 2011, FEBS letters.

[41]  A. Buchberger,et al.  Cdc48: a power machine in protein degradation. , 2011, Trends in biochemical sciences.

[42]  J. Olzmann,et al.  Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum , 2011, Nature Structural &Molecular Biology.

[43]  M. Selbach,et al.  Yos9p assists in the degradation of certain nonglycosylated proteins from the endoplasmic reticulum , 2011, Molecular biology of the cell.

[44]  A. Varshavsky The N‐end rule pathway and regulation by proteolysis , 2011, Protein science : a publication of the Protein Society.

[45]  Andreas Bracher,et al.  Molecular chaperones in protein folding and proteostasis , 2011, Nature.

[46]  R. Hegde,et al.  Protein Targeting and Degradation are Coupled for Elimination of Mislocalized Proteins , 2011, Nature.

[47]  Thomas I. Milac,et al.  Exposed hydrophobicity is a key determinant of nuclear quality control degradation , 2011, Molecular biology of the cell.

[48]  T. Langer,et al.  Quality control of mitochondrial proteostasis. , 2011, Cold Spring Harbor perspectives in biology.

[49]  Qiuyan Wang,et al.  A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. , 2011, Molecular cell.

[50]  Pedro Carvalho,et al.  A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum. , 2011, Molecular cell.

[51]  R. Kopito,et al.  Lipid Droplet Formation Is Dispensable for Endoplasmic Reticulum-associated Degradation* , 2011, The Journal of Biological Chemistry.

[52]  I. Braakman,et al.  Protein folding and modification in the mammalian endoplasmic reticulum. , 2011, Annual review of biochemistry.

[53]  S. Franken,et al.  Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease , 2011, Molecular biology of the cell.

[54]  Suneil K. Kalia,et al.  Ubiquitinylation of α-Synuclein by Carboxyl Terminus Hsp70-Interacting Protein (CHIP) Is Regulated by Bcl-2-Associated Athanogene 5 (BAG5) , 2011, PloS one.

[55]  K. Kitamura,et al.  Nuclear Protein Quality Is Regulated by the Ubiquitin-Proteasome System through the Activity of Ubc4 and San1 in Fission Yeast* , 2011, The Journal of Biological Chemistry.

[56]  Sonja Hess,et al.  Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy , 2011, Human molecular genetics.

[57]  U. Wolfrum,et al.  BAG3 mediates chaperone‐based aggresome‐targeting and selective autophagy of misfolded proteins , 2011, EMBO reports.

[58]  Michele Vendruscolo,et al.  Amyloid-like Aggregates Sequester Numerous Metastable Proteins with Essential Cellular Functions , 2011, Cell.

[59]  Thomas I. Milac,et al.  Disorder targets misorder in nuclear quality control degradation: a disordered ubiquitin ligase directly recognizes its misfolded substrates. , 2011, Molecular cell.

[60]  R. Youle,et al.  Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin , 2010, The Journal of cell biology.

[61]  Riccardo Bernasconi,et al.  ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER , 2010, Current Opinion in Cell Biology.

[62]  Tom A. Rapoport,et al.  Retrotranslocation of a Misfolded Luminal ER Protein by the Ubiquitin-Ligase Hrd1p , 2010, Cell.

[63]  S. Gygi,et al.  A stress-responsive system for mitochondrial protein degradation. , 2010, Molecular cell.

[64]  Bernd Bukau,et al.  Cellular strategies for controlling protein aggregation , 2010, Nature Reviews Molecular Cell Biology.

[65]  B. Bukau,et al.  Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. , 2010, Molecular cell.

[66]  D. Wolf,et al.  Dfm1 Forms Distinct Complexes with Cdc48 and the ER Ubiquitin Ligases and Is Required for ERAD , 2010, Traffic.

[67]  Richard I. Morimoto,et al.  Chaperone networks: Tipping the balance in protein folding diseases , 2010, Neurobiology of Disease.

[68]  C. Joazeiro,et al.  Role of a ribosome-associated E3 ubiquitin ligase in protein quality control , 2010, Nature.

[69]  M. Mayer Gymnastics of molecular chaperones. , 2010, Molecular cell.

[70]  Ali Azizi,et al.  Chemical-genetic profile analysis of five inhibitory compounds in yeast , 2010, BMC chemical biology.

[71]  R. Morimoto,et al.  Heat shock factors: integrators of cell stress, development and lifespan , 2010, Nature Reviews Molecular Cell Biology.

[72]  G. Giaccone,et al.  Targeting the dynamic HSP90 complex in cancer , 2010, Nature Reviews Cancer.

[73]  H. Kampinga,et al.  The HSP70 chaperone machinery: J proteins as drivers of functional specificity , 2010, Nature Reviews Molecular Cell Biology.

[74]  Nadinath B. Nillegoda,et al.  Ubr1 and Ubr2 Function in a Quality Control Pathway for Degradation of Unfolded Cytosolic Proteins , 2010, Molecular biology of the cell.

[75]  S. High,et al.  Bat3 promotes the membrane integration of tail-anchored proteins , 2010, Journal of Cell Science.

[76]  D. Ng,et al.  A Nucleus-based Quality Control Mechanism for Cytosolic Proteins , 2010, Molecular biology of the cell.

[77]  S. Lindquist,et al.  HSP90 at the hub of protein homeostasis: emerging mechanistic insights , 2010, Nature Reviews Molecular Cell Biology.

[78]  R. Hegde,et al.  A Ribosome-Associating Factor Chaperones Tail-Anchored Membrane Proteins , 2010, Nature.

[79]  D. Wolf,et al.  Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. , 2010, Biochimica et biophysica acta.

[80]  B. Pearse,et al.  Lectin chaperones help direct the maturation of glycoproteins in the endoplasmic reticulum. , 2010, Biochimica et biophysica acta.

[81]  N. Hattori,et al.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy , 2010, The Journal of cell biology.

[82]  S. Franken,et al.  The role of protein quality control in mitochondrial protein homeostasis under oxidative stress , 2010, Proteomics.

[83]  Alexander Varshavsky,et al.  N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals , 2010, Science.

[84]  M. Brand,et al.  Degradation of an intramitochondrial protein by the cytosolic proteasome , 2010, Journal of Cell Science.

[85]  Markus Aebi,et al.  N-glycan structures: recognition and processing in the ER. , 2010, Trends in biochemical sciences.

[86]  R. Hampton,et al.  Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1 , 2009, Proceedings of the National Academy of Sciences.

[87]  D. Kornitzer,et al.  The Ubiquitin Ligase Hul5 Promotes Proteasomal Processivity , 2009, Molecular and Cellular Biology.

[88]  Thomas Sommer,et al.  Usa1 functions as a scaffold of the HRD-ubiquitin ligase. , 2009, Molecular cell.

[89]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[90]  S. Yanagi,et al.  Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation. , 2009, Molecular biology of the cell.

[91]  D. Wolf,et al.  Sec61p is part of the endoplasmic reticulum‐associated degradation machinery , 2009, The EMBO journal.

[92]  R. Hampton,et al.  Geranylgeranyl Pyrophosphate Is a Potent Regulator of HRD-dependent 3-Hydroxy-3-methylglutaryl-CoA Reductase Degradation in Yeast* , 2009, The Journal of Biological Chemistry.

[93]  E. Vierling,et al.  Substrate binding site flexibility of the small heat shock protein molecular chaperones , 2009, Proceedings of the National Academy of Sciences.

[94]  Elizabeth A Miller,et al.  Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging , 2009, Proceedings of the National Academy of Sciences.

[95]  Y. Ohsumi,et al.  Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. , 2009, Developmental cell.

[96]  Yoshiaki Kamada,et al.  Dynamics and diversity in autophagy mechanisms: lessons from yeast , 2009, Nature Reviews Molecular Cell Biology.

[97]  Sheena E Radford,et al.  An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms , 2009, Nature Structural &Molecular Biology.

[98]  F. Hartl,et al.  Converging concepts of protein folding in vitro and in vivo , 2009, Nature Structural &Molecular Biology.

[99]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[100]  Daniel Schulz,et al.  Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. , 2009, Molecular cell.

[101]  T. Inada,et al.  Nascent Peptide-dependent Translation Arrest Leads to Not4p-mediated Protein Degradation by the Proteasome* , 2009, Journal of Biological Chemistry.

[102]  S. Tsuji,et al.  Intranuclear Degradation of Polyglutamine Aggregates by the Ubiquitin-Proteasome System* , 2009, Journal of Biological Chemistry.

[103]  M. Komatsu,et al.  A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. , 2009, Molecular cell.

[104]  F. Hartl,et al.  Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3 , 2009, The EMBO journal.

[105]  Thomas Sommer,et al.  Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum , 2009, The Journal of cell biology.

[106]  Z. Wang,et al.  Quality Control of a Transcriptional Regulator by SUMO-Targeted Degradation , 2009, Molecular and Cellular Biology.

[107]  J. Weissman,et al.  Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. , 2008, Molecular cell.

[108]  D. Wolf,et al.  Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1 , 2008, FEBS letters.

[109]  YongSung Kim,et al.  PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. , 2008, Biochemical and biophysical research communications.

[110]  Jianli Lu,et al.  Electrostatics in the ribosomal tunnel modulate chain elongation rates. , 2008, Journal of molecular biology.

[111]  Gabriella M. A. Forte,et al.  Sec61p Is Required for ERAD-L , 2008, Journal of Biological Chemistry.

[112]  F. Inagaki,et al.  Structural basis of target recognition by Atg8/LC3 during selective autophagy , 2008, Genes to cells : devoted to molecular & cellular mechanisms.

[113]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[114]  Jeffrey L. Brodsky,et al.  One step at a time: endoplasmic reticulum-associated degradation , 2008, Nature Reviews Molecular Cell Biology.

[115]  R. Jensen,et al.  Mgr3p and Mgr1p are adaptors for the mitochondrial i-AAA protease complex. , 2008, Molecular biology of the cell.

[116]  M. B. Metzger,et al.  Degradation of a Cytosolic Protein Requires Endoplasmic Reticulum-associated Degradation Machinery* , 2008, Journal of Biological Chemistry.

[117]  Daniel Kaganovich,et al.  Misfolded proteins partition between two distinct quality control compartments , 2008, Nature.

[118]  T. Mizushima,et al.  Structural Basis for Sorting Mechanism of p62 in Selective Autophagy* , 2008, Journal of Biological Chemistry.

[119]  S. Brill,et al.  Activation of the Slx5–Slx8 Ubiquitin Ligase by Poly-small Ubiquitin-like Modifier Conjugates* , 2008, Journal of Biological Chemistry.

[120]  J. Buchner,et al.  The Hsp90 Chaperone Machinery* , 2008, Journal of Biological Chemistry.

[121]  Randy Schekman,et al.  Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins , 2008, The Journal of cell biology.

[122]  D. Wolf,et al.  Ubiquitin Ligase Hul5 Is Required for Fragment-specific Substrate Degradation in Endoplasmic Reticulum-associated Degradation* , 2008, Journal of Biological Chemistry.

[123]  J. Caramelo,et al.  Getting In and Out from Calnexin/Calreticulin Cycles* , 2008, Journal of Biological Chemistry.

[124]  Christian Appenzeller‐Herzog,et al.  The human PDI family: versatility packed into a single fold. , 2008, Biochimica et biophysica acta.

[125]  J. Brodsky,et al.  Dissecting the ER-Associated Degradation of a Misfolded Polytopic Membrane Protein , 2008, Cell.

[126]  D. Wolf,et al.  Ubiquitin receptors and ERAD: a network of pathways to the proteasome. , 2007, Seminars in cell & developmental biology.

[127]  A. Weissman,et al.  Ubiquitin ligases, critical mediators of endoplasmic reticulum-associated degradation. , 2007, Seminars in cell & developmental biology.

[128]  T. Rapoport Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes , 2007, Nature.

[129]  Mary B. Kroetz,et al.  The Yeast Hex3·Slx8 Heterodimer Is a Ubiquitin Ligase Stimulated by Substrate Sumoylation* , 2007, Journal of Biological Chemistry.

[130]  M. Mayer,et al.  Functional Characterization of the Atypical Hsp70 Subunit of Yeast Ribosome-associated Complex* , 2007, Journal of Biological Chemistry.

[131]  David M. Hockenbery,et al.  Hsp90 Inhibition Decreases Mitochondrial Protein Turnover , 2007, PloS one.

[132]  N. Akimitsu Messenger RNA surveillance systems monitoring proper translation termination. , 2007, Journal of biochemistry.

[133]  M. Molinari,et al.  In and out of the ER: protein folding, quality control, degradation, and related human diseases. , 2007, Physiological reviews.

[134]  R. Palmiter,et al.  Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6 , 2007, The Journal of cell biology.

[135]  G. Bjørkøy,et al.  p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy* , 2007, Journal of Biological Chemistry.

[136]  P. Muchowski,et al.  Chaperone Functions of the E3 Ubiquitin Ligase CHIP* , 2007, Journal of Biological Chemistry.

[137]  H. Ploegh A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum , 2007, Nature.

[138]  Y. Ohsumi,et al.  Atg8, a Ubiquitin-like Protein Required for Autophagosome Formation, Mediates Membrane Tethering and Hemifusion , 2007, Cell.

[139]  R. Youle,et al.  The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division , 2007, The Journal of cell biology.

[140]  M. Hild,et al.  HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS , 2007, Nature.

[141]  M. Molinari N-glycan structure dictates extension of protein folding or onset of disposal. , 2007, Nature chemical biology.

[142]  J. Brodsky,et al.  Real-Time Fluorescence Detection of ERAD Substrate Retrotranslocation in a Mammalian In Vitro System , 2007, Cell.

[143]  M. Matsui,et al.  LC3, an Autophagosome Marker, Can be Incorporated into Protein Aggregates Independent of Autophagy: Caution in the Interpretation of LC3 Localization , 2007, Autophagy.

[144]  T. Inada,et al.  Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. , 2007, Genes & development.

[145]  M. A. Braun,et al.  Identification of Rkr1, a Nuclear RING Domain Protein with Functional Connections to Chromatin Modification in Saccharomyces cerevisiae , 2007, Molecular and Cellular Biology.

[146]  T. Langer,et al.  Protein Degradation within Mitochondria: Versatile Activities of AAA Proteases and Other Peptidases , 2007, Critical reviews in biochemistry and molecular biology.

[147]  S. Gygi,et al.  Ubiquitin Chains Are Remodeled at the Proteasome by Opposing Ubiquitin Ligase and Deubiquitinating Activities , 2006, Cell.

[148]  Floris Bosveld,et al.  Polarised Asymmetric Inheritance of Accumulated Protein Damage in Higher Eukaryotes , 2006, PLoS biology.

[149]  R. Hampton,et al.  Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis , 2006, Yeast.

[150]  P. Coffino,et al.  The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. , 2006, Molecular biology of the cell.

[151]  M. Hochstrasser,et al.  Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase , 2006, Nature.

[152]  D. Becker,et al.  Structure and function of Hsp78, the mitochondrial ClpB homolog. , 2006, Journal of structural biology.

[153]  Thomas Sommer,et al.  A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery , 2006, Nature Cell Biology.

[154]  Tom A. Rapoport,et al.  Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins , 2006, Cell.

[155]  M. Ruberg,et al.  PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins , 2006, The Journal of cell biology.

[156]  Bernd Bukau,et al.  Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor , 2006, The EMBO journal.

[157]  Andreas Bracher,et al.  Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s , 2006, The EMBO journal.

[158]  C. Dobson,et al.  Protein misfolding, functional amyloid, and human disease. , 2006, Annual review of biochemistry.

[159]  T. Sommer,et al.  The Hrd1p ligase complex forms a linchpin between ER‐lumenal substrate selection and Cdc48p recruitment , 2006, The EMBO journal.

[160]  M. Hochstrasser,et al.  Membrane Topology of the Yeast Endoplasmic Reticulum-localized Ubiquitin Ligase Doa10 and Comparison with Its Human Ortholog TEB4 (MARCH-VI)* , 2006, Journal of Biological Chemistry.

[161]  M. Hochstrasser,et al.  Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways , 2006, The EMBO journal.

[162]  Sheena E Radford,et al.  The Yin and Yang of protein folding , 2005, The FEBS journal.

[163]  P. Cohen,et al.  Chaperoned ubiquitylation--crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. , 2005, Molecular cell.

[164]  G. Bjørkøy,et al.  p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death , 2005, The Journal of cell biology.

[165]  C. Borchers,et al.  Regulation of the Cytoplasmic Quality Control Protein Degradation Pathway by BAG2* , 2005, Journal of Biological Chemistry.

[166]  D. Klionsky,et al.  Autophagy: molecular machinery for self-eating , 2005, Cell Death and Differentiation.

[167]  S. Lindquist,et al.  HSP90 and the chaperoning of cancer , 2005, Nature Reviews Cancer.

[168]  E. Sztul,et al.  Nuclear aggresomes form by fusion of PML-associated aggregates. , 2005, Molecular biology of the cell.

[169]  A. Buchberger,et al.  Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation , 2005, Nature Cell Biology.

[170]  T. Sommer,et al.  Ubx2 links the Cdc48 complex to ER-associated protein degradation , 2005, Nature Cell Biology.

[171]  Woong Kim,et al.  Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. , 2005, Molecular cell.

[172]  M. Nita-Lazar,et al.  Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. , 2005, Molecular cell.

[173]  J. Weissman,et al.  Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. , 2005, Molecular cell.

[174]  T. Sommer,et al.  ERAD: the long road to destruction , 2005, Nature Cell Biology.

[175]  Johannes Buchner,et al.  Disassembling Protein Aggregates in the Yeast Cytosol , 2005, Journal of Biological Chemistry.

[176]  Martin L. Duennwald,et al.  A Chaperone Pathway in Protein Disaggregation , 2005, Journal of Biological Chemistry.

[177]  J. Frydman,et al.  Folding and Quality Control of the VHL Tumor Suppressor Proceed through Distinct Chaperone Pathways , 2005, Cell.

[178]  E. Craig,et al.  The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1 , 2005, Nature Structural &Molecular Biology.

[179]  E. Craig,et al.  Human Mpp11 J Protein: Ribosome-Tethered Molecular Chaperones Are Ubiquitous , 2005, Science.

[180]  D. Wolf,et al.  Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation , 2005, Journal of Cell Science.

[181]  D. Gottschling,et al.  Degradation-Mediated Protein Quality Control in the Nucleus , 2005, Cell.

[182]  S. Jentsch,et al.  A Series of Ubiquitin Binding Factors Connects CDC48/p97 to Substrate Multiubiquitylation and Proteasomal Targeting , 2005, Cell.

[183]  I. Braakman,et al.  Versatility of the Endoplasmic Reticulum Protein Folding Factory , 2005, Critical reviews in biochemistry and molecular biology.

[184]  X. Mao,et al.  Rpn4 Is a Physiological Substrate of the Ubr2 Ubiquitin Ligase* , 2004, Journal of Biological Chemistry.

[185]  D. Wolf,et al.  The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. , 2004, Biochimica et biophysica acta.

[186]  S. Alberti,et al.  Cooperation of molecular chaperones with the ubiquitin/proteasome system. , 2004, Biochimica et biophysica acta.

[187]  D. Wolf,et al.  A genome‐wide screen identifies Yos9p as essential for ER‐associated degradation of glycoproteins , 2004, FEBS letters.

[188]  H. Saibil,et al.  A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. , 2004, Journal of molecular biology.

[189]  M. Hochstrasser,et al.  Distinct Machinery Is Required in Saccharomyces cerevisiae for the Endoplasmic Reticulum-associated Degradation of a Multispanning Membrane Protein and a Soluble Luminal Protein* , 2004, Journal of Biological Chemistry.

[190]  S. Alberti,et al.  The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. , 2004, Molecular biology of the cell.

[191]  J. Riordan,et al.  Cystic fibrosis transmembrane conductance regulator degradation depends on the lectins Htm1p/EDEM and the Cdc48 protein complex in yeast. , 2004, Molecular biology of the cell.

[192]  T. Langer,et al.  Membrane protein turnover by the m‐AAA protease in mitochondria depends on the transmembrane domains of its subunits , 2004, EMBO reports.

[193]  D. Wolf,et al.  A genomic screen identifies Dsk2p and Rad23p as essential components of ER‐associated degradation , 2004, EMBO reports.

[194]  C. Ross,et al.  Protein aggregation and neurodegenerative disease , 2004, Nature Medicine.

[195]  D. Auble,et al.  Sir Antagonist 1 (San1) Is a Ubiquitin Ligase* , 2004, Journal of Biological Chemistry.

[196]  T. Rapoport,et al.  A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol , 2004, Nature.

[197]  H. Ploegh,et al.  A membrane protein required for dislocation of misfolded proteins from the ER , 2004, Nature.

[198]  A. Helenius,et al.  Roles of N-linked glycans in the endoplasmic reticulum. , 2004, Annual review of biochemistry.

[199]  P. C. Ramos,et al.  Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome , 2004, FEBS letters.

[200]  Donghong Ju,et al.  Proteasomal Degradation of RPN4 via Two Distinct Mechanisms, Ubiquitin-dependent and -independent* , 2004, Journal of Biological Chemistry.

[201]  R. Hitt,et al.  Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. , 2004, FEMS yeast research.

[202]  D. Ng,et al.  Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control , 2004, The Journal of cell biology.

[203]  J. Buchner,et al.  Analysis of the Regulation of the Molecular Chaperone Hsp26 by Temperature-induced Dissociation , 2004, Journal of Biological Chemistry.

[204]  J. Buchner,et al.  Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae , 2004, The EMBO journal.

[205]  J. Weissman,et al.  Oxidative protein folding in eukaryotes , 2004, The Journal of cell biology.

[206]  J. Vance,et al.  The Deacetylase HDAC6 Regulates Aggresome Formation and Cell Viability in Response to Misfolded Protein Stress , 2003, Cell.

[207]  D. Wolf,et al.  For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin–proteasome connection , 2003, The EMBO journal.

[208]  Carl W. Cotman,et al.  Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis , 2003, Science.

[209]  E. Craig,et al.  Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding? , 2003, Current opinion in microbiology.

[210]  R. Kaufman,et al.  The mammalian unfolded protein response. , 2003, Annual review of biochemistry.

[211]  M. Gautschi,et al.  Nascent-polypeptide-associated complex , 2002, Cellular and Molecular Life Sciences CMLS.

[212]  S. Walter Structure and function of the GroE chaperone , 2002, Cellular and Molecular Life Sciences CMLS.

[213]  W. Voos,et al.  Molecular chaperones as essential mediators of mitochondrial biogenesis. , 2002, Biochimica et biophysica acta.

[214]  R. Kopito,et al.  Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. , 2002, Cell motility and the cytoskeleton.

[215]  M. Carmo-Fonseca,et al.  Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. , 2002, Molecular biology of the cell.

[216]  K. Borden,et al.  Pondering the Promyelocytic Leukemia Protein (PML) Puzzle: Possible Functions for PML Nuclear Bodies , 2002, Molecular and Cellular Biology.

[217]  F. Hartl,et al.  Molecular Chaperones in the Cytosol: from Nascent Chain to Folded Protein , 2002, Science.

[218]  S. Jentsch,et al.  Role of the ubiquitin‐selective CDC48UFD1/NPL4 chaperone (segregase) in ERAD of OLE1 and other substrates , 2002, The EMBO journal.

[219]  C. Taxis,et al.  Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48 , 2002, Nature Cell Biology.

[220]  K. Fröhlich,et al.  AAA-ATPase p97/Cdc48p, a Cytosolic Chaperone Required for Endoplasmic Reticulum-Associated Protein Degradation , 2002, Molecular and Cellular Biology.

[221]  Tom A. Rapoport,et al.  The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol , 2001, Nature.

[222]  R. Hampton,et al.  HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. , 2001, Molecular biology of the cell.

[223]  D. Cyr,et al.  CHIP Is a U-box-dependent E3 Ubiquitin Ligase , 2001, The Journal of Biological Chemistry.

[224]  G. Maul,et al.  Cellular proteins localized at and interacting within ND10/PML nuclear bodies/PODs suggest functions of a nuclear depot , 2001, Oncogene.

[225]  P. Freemont,et al.  PML protein isoforms and the RBCC/TRIM motif , 2001, Oncogene.

[226]  M. Hochstrasser,et al.  A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. , 2001, Genes & development.

[227]  N. Hattori,et al.  An Unfolded Putative Transmembrane Polypeptide, which Can Lead to Endoplasmic Reticulum Stress, Is a Substrate of Parkin , 2001, Cell.

[228]  J. Brodsky,et al.  Molecular Chaperones in the Yeast Endoplasmic Reticulum Maintain the Solubility of Proteins for Retrotranslocation and Degradation , 2001, The Journal of cell biology.

[229]  H. Lehrach,et al.  Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. , 2001, Molecular biology of the cell.

[230]  David Y. Thomas,et al.  Htm1p, a mannosidase‐like protein, is involved in glycoprotein degradation in yeast , 2001, EMBO reports.

[231]  I. Wada,et al.  A novel ER α‐mannosidase‐like protein accelerates ER‐associated degradation , 2001 .

[232]  D. Wolf,et al.  Membrane Topology and Function of Der3/Hrd1p as a Ubiquitin-Protein Ligase (E3) Involved in Endoplasmic Reticulum Degradation* , 2001, The Journal of Biological Chemistry.

[233]  R. Kopito,et al.  Aggresomes, inclusion bodies and protein aggregation. , 2000, Trends in cell biology.

[234]  T. Dawson,et al.  Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[235]  Y. Imai,et al.  Parkin Suppresses Unfolded Protein Stress-induced Cell Death through Its E3 Ubiquitin-protein Ligase Activity* , 2000, The Journal of Biological Chemistry.

[236]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.

[237]  R. G. Kulka,et al.  Degradation Signals Recognized by the Ubc6p-Ubc7p Ubiquitin-Conjugating Enzyme Pair , 2000, Molecular and Cellular Biology.

[238]  B. Bukau,et al.  Size-dependent Disaggregation of Stable Protein Aggregates by the DnaK Chaperone Machinery* , 2000, The Journal of Biological Chemistry.

[239]  Jörg Urban,et al.  A regulatory link between ER-associated protein degradation and the unfolded-protein response. , 2000, Nature Cell Biology.

[240]  R. Sternglanz,et al.  PNG1, a Yeast Gene Encoding a Highly Conserved Peptide:N-Glycanase , 2000, The Journal of cell biology.

[241]  J. Höhfeld,et al.  The Ubiquitin-related BAG-1 Provides a Link between the Molecular Chaperones Hsc70/Hsp70 and the Proteasome* , 2000, The Journal of Biological Chemistry.

[242]  N. Pfanner,et al.  The Mitochondrial Protein Import Motor , 2000, Biological chemistry.

[243]  W. Lennarz,et al.  Export of a Cysteine-Free Misfolded Secretory Protein from the Endoplasmic Reticulum for Degradation Requires Interaction with Protein Disulfide Isomerase , 1999, The Journal of cell biology.

[244]  A. Zvi,et al.  Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[245]  J. Brodsky,et al.  ER protein quality control and proteasome-mediated protein degradation. , 1999, Seminars in cell & developmental biology.

[246]  S. Johnston,et al.  Subcellular Localization, Stoichiometry, and Protein Levels of 26 S Proteasome Subunits in Yeast* , 1999, The Journal of Biological Chemistry.

[247]  R. Plemper,et al.  Retrograde protein translocation: ERADication of secretory proteins in health and disease. , 1999, Trends in biochemical sciences.

[248]  P. Connell,et al.  Identification of CHIP, a Novel Tetratricopeptide Repeat-Containing Protein That Interacts with Heat Shock Proteins and Negatively Regulates Chaperone Functions , 1999, Molecular and Cellular Biology.

[249]  H. Feldmann,et al.  Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast , 1999, FEBS letters.

[250]  S. Jentsch,et al.  A Novel Ubiquitination Factor, E4, Is Involved in Multiubiquitin Chain Assembly , 1999, Cell.

[251]  J. Brodsky,et al.  The Requirement for Molecular Chaperones during Endoplasmic Reticulum-associated Protein Degradation Demonstrates That Protein Export and Import Are Mechanistically Distinct* , 1999, The Journal of Biological Chemistry.

[252]  R. Kopito,et al.  Aggresomes: A Cellular Response to Misfolded Proteins , 1998, The Journal of cell biology.

[253]  M. Aebi,et al.  Degradation of Misfolded Endoplasmic Reticulum Glycoproteins in Saccharomyces cerevisiae Is Determined by a Specific Oligosaccharide Structure , 1998, The Journal of cell biology.

[254]  S. Lindquist,et al.  Hsp104, Hsp70, and Hsp40 A Novel Chaperone System that Rescues Previously Aggregated Proteins , 1998, Cell.

[255]  R. G. Kulka,et al.  Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae , 1998, The EMBO journal.

[256]  M. Karplus,et al.  Protein Folding: A Perspective from Theory and Experiment. , 1998, Angewandte Chemie.

[257]  T. Biederer,et al.  Role of Cue1p in ubiquitination and degradation at the ER surface. , 1997, Science.

[258]  D. Wolf,et al.  Endoplasmic reticulum degradation: reverse protein flow of no return , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[259]  S. W. Davies,et al.  Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. , 1997, Science.

[260]  R. Plemper,et al.  Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation , 1997, Nature.

[261]  R. Schekman,et al.  Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation , 1997, The EMBO journal.

[262]  Bernd Bukau,et al.  Substrate specificity of the DnaK chaperone determined by screening cellulose‐bound peptide libraries , 1997, The EMBO journal.

[263]  T. Rapoport,et al.  Sec6l-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction , 1996, Nature.

[264]  J. Rine,et al.  Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. , 1996, Molecular biology of the cell.

[265]  E. Alnemri,et al.  Cooperative action of Hsp70, Hsp90, and DnaJ proteins in protein renaturation. , 1996, Biochemistry.

[266]  J. Brodsky,et al.  Proteasome-dependent endoplasmic reticulum-associated protein degradation: An unconventional route to a familiar fate , 1996 .

[267]  M. Knop,et al.  N‐glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast , 1996, Yeast.

[268]  D. Wolf,et al.  ER Degradation of a Misfolded Luminal Protein by the Cytosolic Ubiquitin-Proteasome Pathway , 1996, Science.

[269]  E. Craig,et al.  Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo , 1996, Molecular and cellular biology.

[270]  F. Hartl Molecular chaperones in cellular protein folding , 1996, Nature.

[271]  R. Morimoto,et al.  The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj‐1 have distinct roles in recognition of a non‐native protein and protein refolding. , 1996, The EMBO journal.

[272]  S. Lindquist,et al.  Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[273]  M. Knop,et al.  Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. , 1996, The EMBO journal.

[274]  J. Buchner,et al.  Transient Interaction of Hsp90 with Early Unfolding Intermediates of Citrate Synthase , 1995, The Journal of Biological Chemistry.

[275]  Susan Lindquist,et al.  Protein disaggregation mediated by heat-shock protein Hspl04 , 1994, Nature.

[276]  M. Wiedmann,et al.  A protein complex required for signal-sequence-specific sorting and translocation , 1994, Nature.

[277]  M. Tuite,et al.  Protein disulphide isomerase: building bridges in protein folding. , 1994, Trends in biochemical sciences.

[278]  G. Schatz,et al.  Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. , 1994, Science.

[279]  F. Sherman,et al.  PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. , 1994, The Journal of biological chemistry.

[280]  M. Knop,et al.  Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. , 1993, European journal of biochemistry.

[281]  D. C. Carter,et al.  Atomic structure and chemistry of human serum albumin , 1993, Nature.

[282]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[283]  J. Kleinschmidt,et al.  Proteinase yscE, the yeast proteasome/multicatalytic‐multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. , 1991, The EMBO journal.

[284]  S. Jentsch,et al.  UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin‐conjugating enzymes involved in protein degradation. , 1990, The EMBO journal.

[285]  A. Varshavsky,et al.  The recognition component of the N‐end rule pathway. , 1990, The EMBO journal.

[286]  M. Goebl,et al.  The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. , 1988, Science.

[287]  B. Lai,et al.  Quantitation and intracellular localization of the 85K heat shock protein by using monoclonal and polyclonal antibodies , 1984, Molecular and cellular biology.

[288]  D. Wolf,et al.  The Cdc48 machine in endoplasmic reticulum associated protein degradation. , 2012, Biochimica et biophysica acta.

[289]  S. Wickner,et al.  Hsp104 and ClpB: protein disaggregating machines. , 2009, Trends in biochemical sciences.

[290]  N. G. Haigh,et al.  Protein Sorting at the Membrane of the Endoplasmic Reticulum , 2002 .

[291]  S. Brill,et al.  Requirement for three novel protein complexes in the absence of the Sgs1 DNA helicase in Saccharomyces cerevisiae. , 2001, Genetics.

[292]  C. Joazeiro,et al.  Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation , 2000, Nature Cell Biology.

[293]  A. Varshavsky,et al.  The N‐end rule pathway controls the import of peptides through degradation of a transcriptional repressor , 1998, The EMBO journal.

[294]  A. Emons,et al.  Boekbespreking: Molecular biology of the cell, B. Alberts, D. Bray, J. Lewis, M. Raff, K. Robers, D.J. Watson. Garland Publ., New York. 1989. , 1990 .