Interpretable Low-Dimensional Regression via Data-Adaptive Smoothing
暂无分享,去创建一个
[1] Suvrit Sra,et al. Fast Newton-type Methods for Total Variation Regularization , 2011, ICML.
[2] Noah Simon,et al. Convex Regression with Interpretable Sharp Partitions , 2016, J. Mach. Learn. Res..
[3] James G. Scott,et al. Multiscale Spatial Density Smoothing: An Application to Large-Scale Radiological Survey and Anomaly Detection , 2015, 1507.07271.
[4] J. Marc Overhage,et al. A Context-sensitive Approach to Anonymizing Spatial Surveillance Data , 2006 .
[5] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[6] Robert Tibshirani,et al. Estimating the number of clusters in a data set via the gap statistic , 2000 .
[7] C. Walck. Hand-book on statistical distributions for experimentalists , 1996 .
[8] Antonin Chambolle,et al. On Total Variation Minimization and Surface Evolution Using Parametric Maximum Flows , 2009, International Journal of Computer Vision.
[9] Nicholas A. Johnson,et al. A Dynamic Programming Algorithm for the Fused Lasso and L 0-Segmentation , 2013 .
[10] R. Tibshirani,et al. The solution path of the generalized lasso , 2010, 1005.1971.
[11] R. Tibshirani,et al. Sparsity and smoothness via the fused lasso , 2005 .
[12] Maya R. Gupta,et al. Monotonic Calibrated Interpolated Look-Up Tables , 2015, J. Mach. Learn. Res..
[13] Alexander J. Smola,et al. Trend Filtering on Graphs , 2014, J. Mach. Learn. Res..
[14] Suvrit Sra,et al. Modular Proximal Optimization for Multidimensional Total-Variation Regularization , 2014, J. Mach. Learn. Res..