Lower confidence bounds for percentiles of weibull and birnbaum-saunders distributions

Approximate lower confidence bounds on percentiles of the Weibull and the Birnbaum-Saunders distributions are investigated. Asymptotic lower confidence bounds based on Bonferroni's inequality and the Fisher information are discussed, and parametric bootstrap methods to provide better bounds are considered. Since the standard percentile bootstrap method typically does not perform well for confidence bounds on quantiles, several other bootstrap procedures are studied via extensive computer simulations. Results of the simulations indicate that the bootstrap methods generally give sharper lower bounds than the Bonferroni bounds but with coverages still near the nominal confidence level. Two illustrative examples are also presented, one for tensile strength of carbon micro-composite specimens and the other for cycles-to-failure data.

[1]  W. R. Schucany,et al.  Generating Random Variates Using Transformations with Multiple Roots , 1976 .

[2]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[3]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[4]  Michael A. Martin On Bootstrap Iteration for Coverage Correction in Confidence Intervals , 1990 .

[5]  Z. Birnbaum,et al.  A new family of life distributions , 1969 .

[6]  P. Hall The Bootstrap and Edgeworth Expansion , 1992 .

[7]  Loon Ching Tang,et al.  Percentile bounds and tolerance limits for the birnbaum-saunders distribution , 1994 .

[8]  S. D. Durham,et al.  Cumulative damage models for system failure with application to carbon fibers and composites , 1997 .

[9]  M. Chavance [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.

[10]  Richard L. Smith Weibull regression models for reliability data , 1991 .

[11]  Asit P. Basu,et al.  Frontiers in Reliability , 1998 .

[12]  Linda C. Wolstenholme,et al.  A Nonparametric Test of the Weakest-Link Principle , 1995 .

[13]  Sam C. Saunders,et al.  ESTIMATION FOR A FAMILY OF LIFE DISTRIBUTIONS WITH APPLICATIONS TO FATIGUE , 1969 .

[14]  Sam C. Saunders,et al.  Estimation for a family of life distributions with applications to fatigue , 1969, Journal of Applied Probability.

[15]  F. Downton,et al.  Statistical analysis of reliability and life-testing models : theory and methods , 1992 .

[16]  N. Singpurwalla,et al.  Methods for Statistical Analysis of Reliability and Life Data. , 1975 .

[17]  S. C. Saunders,et al.  A Statistical Model for Life-Length of Materials , 1958 .

[18]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[19]  E. Kay,et al.  Methods for statistical analysis of reliability and life data , 1974 .

[20]  B. Efron,et al.  The Jackknife: The Bootstrap and Other Resampling Plans. , 1983 .

[21]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[22]  B. Efron Nonparametric standard errors and confidence intervals , 1981 .

[23]  W. J. Padgett,et al.  Accelerated Test Models for System Strength Based on Birnbaum-Saunders Distributions , 1999, Lifetime data analysis.

[24]  Richard E. Barlow,et al.  Statistical Analysis of Reliability and Life Testing Models , 1975 .

[25]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[26]  J. Leroy Folks,et al.  The Inverse Gaussian Distribution , 1989 .

[27]  Bradley Efron,et al.  Censored Data and the Bootstrap , 1981 .

[28]  W. J. Padgett,et al.  BIRNBAUM-SAUNDERS-TYPE MODELS FOR SYSTEM STRENGTH ASSUMING MULTIPLICATIVE DAMAGE , 1998 .

[29]  Arthur Fries,et al.  Fatigue Failure Models ߝ Birnbaum-Saunders vs. Inverse Gaussian , 1982, IEEE Transactions on Reliability.