A note on thick subcategories of stable derived categories

Abstract For an exact category having enough projective objects, we establish a bijection between thick subcategories containing the projective objects and thick subcategories of the stable derived category. Using this bijection, we classify thick subcategories of finitely generated modules over strict local complete intersections and produce generators for the category of coherent sheaves on a separated Noetherian scheme with an ample family of line bundles.

[1]  Greg Stevenson Subcategories of singularity categories via tensor actions , 2011, Compositio Mathematica.

[2]  Steffen Oppermann,et al.  Generating the bounded derived category and perfect ghosts , 2010, 1006.3568.

[3]  Ryo Takahashi Thick subcategories over Gorenstein local rings that are locally hypersurfaces on the punctured spectra , 2011, 1109.3120.

[4]  Ryo Takahashi Classifying thick subcategories of the stable category of Cohen-Macaulay modules , 2009, 0908.0107.

[5]  H. Krause,et al.  Stratifying modular representations of finite groups , 2008, 0810.1339.

[6]  H. Krause,et al.  Thick subcategories and virtually Gorenstein algebras , 2006, math/0608710.

[7]  A. Kuku,et al.  Higher Algebraic K-Theory , 2006 .

[8]  H. Krause the stable derived category of a noetherian scheme , 2004, Compositio Mathematica.

[9]  D. Orlov,et al.  Triangulated categories of singularities and D-branes in Landau-Ginzburg models , 2003, math/0302304.

[10]  H. Schoutens Projective Dimension and the Singular Locus , 2003 .

[11]  M. Bergh,et al.  Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.

[12]  M. Schlichting,et al.  IDEMPOTENT COMPLETION OF TRIANGULATED CATEGORIES , 2001 .

[13]  D. Benson,et al.  Thick subcategories of the stable module category , 1997 .

[14]  J. Verdier,et al.  Des catégories dérivées des catégories abéliennes , 1996 .

[15]  Amnon Neeman,et al.  The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , 1996 .

[16]  A. Neeman The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel , 1992 .

[17]  A. Neeman The derived category of an exact category , 1990 .

[18]  Ragnar-Olaf Buchweitz,et al.  Maximal Cohen-Macaulay Modules and Tate-Cohomology Over Gorenstein Rings , 1986 .

[19]  T. Willmore Algebraic Geometry , 1973, Nature.

[20]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .