Dengue in Cape Verde: Vector Control and Vaccination
暂无分享,去创建一个
Delfim F. M. Torres | M. Teresa T. Monteiro | Helena Sofia Rodrigues | M. T. Monteiro | H. Rodrigues
[1] B. Murphy,et al. Vaccine candidates for dengue virus type 1 (DEN1) generated by replacement of the structural genes of rDEN4 and rDEN4Δ30 with those of DEN1 , 2007, Virology Journal.
[2] Piotr J Durka,et al. From wavelets to adaptive approximations: time-frequency parametrization of EEG , 2003, Biomedical engineering online.
[3] James S. Muldowney,et al. A Geometric Approach to Global-Stability Problems , 1996 .
[4] Delsio Natal,et al. BIOECOLOGIA DO AEDES AEGYPTI , 2002 .
[5] J. Velasco-Hernández,et al. Competitive exclusion in a vector-host model for the dengue fever , 1997, Journal of mathematical biology.
[6] Lourdes Esteva,et al. Mathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique. , 2005, Mathematical biosciences.
[7] Delfim F. M. Torres,et al. Dynamics of Dengue epidemics when using optimal control , 2010, Math. Comput. Model..
[8] E. Massad,et al. Dynamics of the 2006/2007 dengue outbreak in Brazil. , 2008, Memorias do Instituto Oswaldo Cruz.
[9] Jeffrey D Stancil,et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats , 2009, Proceedings of the National Academy of Sciences.
[10] Delfim F. M. Torres,et al. Insecticide Control in a Dengue Epidemics Model , 2010, 1007.5159.
[11] Y. Dumont,et al. On a temporal model for the Chikungunya disease: modeling, theory and numerics. , 2008, Mathematical biosciences.
[12] Delfim F. M. Torres,et al. Optimization of Dengue Epidemics: A Test Case with Different Discretization Schemes , 2009, 1001.3303.
[13] Mohammed Derouich,et al. Dengue fever: Mathematical modelling and computer simulation , 2006, Appl. Math. Comput..
[14] A. Boutayeb,et al. A model of dengue fever , 2003, Biomedical engineering online.
[15] M. S. Briscoe,et al. Aedes Aegypti The Yellow Fever Mosquito, Its Life History, Bionomics And Structure , 1962 .
[16] Y. Dumont,et al. Vector control for the Chikungunya disease. , 2010, Mathematical biosciences and engineering : MBE.
[17] Herbert W. Hethcote,et al. THE BASIC EPIDEMIOLOGY MODELS: MODELS, EXPRESSIONS FOR R0, PARAMETER ESTIMATION, AND APPLICATIONS , 2008 .
[18] Willem Takken,et al. Ecological aspects for application of genetically modified mosquitoes , 2003 .
[19] S. Halstead. The XXth century dengue pandemic: need for surveillance and research. , 1992, World health statistics quarterly. Rapport trimestriel de statistiques sanitaires mondiales.
[20] Cláudia Pio Ferreira,et al. Controlling Dispersal Dynamics of Aedes aegypti , 2006 .
[21] C P Farrington,et al. On vaccine efficacy and reproduction numbers. , 2003, Mathematical biosciences.
[22] Alan L Rothman,et al. Epidemiology of inapparent and symptomatic acute dengue virus infection: a prospective study of primary school children in Kamphaeng Phet, Thailand. , 2002, American journal of epidemiology.
[23] Delfim F. M. Torres,et al. Dengue disease, basic reproduction number and control , 2011, Int. J. Comput. Math..
[24] B. Menne,et al. Climate change and infectious diseases in Europe , 2010 .
[25] Samuel Bowong,et al. Lyapunov functions for a dengue disease transmission model , 2009 .
[26] H. Yang,et al. Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide. , 2010, Mathematical biosciences.
[27] Quantitative analysis of Nipah virus proteins released as virus-like particles reveals central role for the matrix protein , 2007, Virology journal.
[28] A. Barrett,et al. Scientific consultation on immunological correlates of protection induced by dengue vaccines report from a meeting held at the World Health Organization 17-18 November 2005. , 2007, Vaccine.
[29] J. Hyman,et al. Estimation of the reproduction number of dengue fever from spatial epidemic data. , 2007, Mathematical biosciences.
[30] T. Scott,et al. Aedes aegypti density and the risk of dengue-virus transmission , 2004 .
[31] J. Watmough,et al. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. , 2002, Mathematical biosciences.