Contributions of matric and osmotic potentials to the unfrozen water content of frozen soils

[1]  M. Nilsson,et al.  Water availability controls microbial temperature responses in frozen soil CO2 production , 2009 .

[2]  H. Laudon,et al.  Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire – a significant sink after accounting for all C‐fluxes , 2008 .

[3]  M. Nilsson,et al.  Annual carbon exchange between a nutrient poor, minerotrophic, boreal mire and the atmosphere , 2008 .

[4]  W. Oechel,et al.  Microbial activity in soils frozen to below −39 °C , 2006 .

[5]  E. Davidson,et al.  Temperature sensitivity of soil carbon decomposition and feedbacks to climate change , 2006, Nature.

[6]  D. Sego,et al.  The effect of salinity on the freezing of coarse- grained sands , 2006 .

[7]  R. Monson,et al.  Winter forest soil respiration controlled by climate and microbial community composition , 2006, Nature.

[8]  E. Davidson,et al.  On the variability of respiration in terrestrial ecosystems: moving beyond Q10 , 2006 .

[9]  J. Torrance,et al.  Chemical factors in soil freezing and frost heave , 2006, Polar Record.

[10]  J. Schimel,et al.  Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle , 2005 .

[11]  M. Nilsson,et al.  Quantifying unfrozen water in frozen soil by high-field 2H NMR. , 2004, Environmental science & technology.

[12]  M. Nilsson,et al.  Nitrous oxide production in a forest soil at low temperatures - processes and environmental controls. , 2004, FEMS microbiology ecology.

[13]  Tomas Lundmark,et al.  The influence of soil temperature on transpiration: a plot scale manipulation in a young Scots pine stand , 2004 .

[14]  H. Cornell,et al.  The role of hydrogen bonding in amylose gelation , 2004 .

[15]  P. Price,et al.  Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  F. Tanaka,et al.  The behavior of cellulose molecules in aqueous environments , 2004 .

[17]  S. Suzuki Dependence of unfrozen water content in unsaturated frozen clay soil on initial soil moisture content , 2004 .

[18]  Joshua P. Schimel,et al.  Temperature controls of microbial respiration in arctic tundra soils above and below freezing , 2002 .

[19]  V. Meentemeyer,et al.  Litter quality in a north European transect versus carbon storage potential , 2002, Plant and Soil.

[20]  Vladimir E. Romanovsky,et al.  Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. , 2000 .

[21]  P. Groffman,et al.  Snow depth, soil frost and nutrient loss in a northern hardwood forest , 1999 .

[22]  P. Martikainen,et al.  Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands , 1999 .

[23]  R. Stenger,et al.  Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models , 1998, Nutrient Cycling in Agroecosystems.

[24]  M. Hohmann Soil freezing — the concept of soil water potential. State of the art , 1997 .

[25]  Christopher Potter,et al.  Process modeling of controls on nitrogen trace gas emissions from soils worldwide , 1996 .

[26]  R. Giesler,et al.  Soil solution chemistry: effects of bulking soil samples , 1993 .

[27]  David B. Rorabacher,et al.  Statistical treatment for rejection of deviant values: critical values of Dixon's "Q" parameter and related subrange ratios at the 95% confidence level , 1991 .

[28]  J. Konrad,et al.  Solute partitioning in freezing soils , 1990 .

[29]  A. Klute Methods of soil analysis. Part 1. Physical and mineralogical methods. , 1988 .

[30]  Lars R. Bakken,et al.  The relationship between cell size and viability of soil bacteria , 1987, Microbial Ecology.

[31]  Anònim Anònim Keys to Soil Taxonomy , 2010 .

[32]  N. Panikov Contribution of nanosized bacteria to the total biomass and activity of a soil microbial community. , 2005, Advances in applied microbiology.

[33]  L. Bakken,et al.  Flow cytometric measurements of cell volumes and DNA contents during culture of indigenous soil bacteria , 2004, Microbial Ecology.

[34]  N. H. Ravindranath,et al.  Land use, land-use change and forestry. Summary for policymakers. , 2000 .

[35]  J. Baker,et al.  The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic , 1996 .

[36]  B. Gunnink CRITICAL ANALYSIS OF CONDUCTOMETRIC PHASE TRANSITION POROSIMETRY: 1. CAPILLARY FREEZING AND MELTING , 1989 .

[37]  D. Hillel Introduction to environmental soil physics , 1982 .

[38]  Juhani Päivänen,et al.  Hydraulic conductivity and water retention in peat soils. , 1973 .

[39]  Duwayne M. Anderson,et al.  PREDICTING UNFROZEN WATER CONTENTS IN FROZEN SOILS FROM SURFACE AREA MEASUREMENTS , 1972 .