Ancient divergence of animal protein tyrosine kinase genes demonstrated by a gene family tree including choanoflagellate genes

[1]  K. Katoh,et al.  Multiple receptor-like kinase cDNAs from liverwort Marchantia polymorpha and two charophycean green algae, Closterium ehrenbergii and Nitella axillaris: Extensive gene duplications and gene shufflings in the early evolution of streptophytes. , 2007, Gene.

[2]  T. Miyata,et al.  Evolution of the gene families forming the Pax/Six regulatory network: Isolation of genes from primitive animals and molecular phylogenetic analyses , 2007, FEBS letters.

[3]  T. Miyata,et al.  Functional development of Src tyrosine kinases during evolution from a unicellular ancestor to multicellular animals , 2006, Proceedings of the National Academy of Sciences.

[4]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[5]  N. King,et al.  The unicellular ancestry of animal development. , 2004, Developmental cell.

[6]  S. Carroll,et al.  Evolution of Key Cell Signaling and Adhesion Protein Families Predates Animal Origins , 2003, Science.

[7]  S. Carroll,et al.  A receptor tyrosine kinase from choanoflagellates: Molecular insights into early animal evolution , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  K. Katoh,et al.  Sponge homologs of vertebrate protein tyrosine kinases and frequent domain shufflings in the early evolution of animals before the parazoan-eumetazoan split. , 2001, Gene.

[9]  T. Miyata,et al.  Divergence pattern of animal gene families and relationship with the Cambrian explosion , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[10]  Kazutaka Katoh,et al.  Genetic Algorithm-Based Maximum-Likelihood Analysis for Molecular Phylogeny , 2001, Journal of Molecular Evolution.

[11]  D. Robinson,et al.  The protein tyrosine kinase family of the human genome , 2000, Oncogene.

[12]  T. Miyata,et al.  Multiple TGF‐β receptor related genes in sponge and ancient gene duplications before the parazoan–eumetazoan split 1 , 1999 .

[13]  K. Kuma,et al.  Multiple Protein Tyrosine Phosphatases in Sponges and Explosive Gene Duplication in the Early Evolution of Animals Before the Parazoan–Eumetazoan Split , 1999, Journal of Molecular Evolution.

[14]  K. Kuma,et al.  Extensive Gene Duplication in the Early Evolution of Animals Before the Parazoan–Eumetazoan Split Demonstrated by G Proteins and Protein Tyrosine Kinases from Sponge and Hydra , 1999, Journal of Molecular Evolution.

[15]  K. Kuma,et al.  Sponge Pax cDNA Related to Pax-2/5/8 and Ancient Gene Duplications in the Pax Family , 1998, Journal of Molecular Evolution.

[16]  T. Miyata,et al.  Phospholipase C cDNAs from sponge and hydra: antiquity of genes involved in the inositol phospholipid signaling pathway 1 , 1998, FEBS letters.

[17]  K. Kuma,et al.  Ancient gene duplication and domain shuffling in the animal cyclic nucleotide phosphodiesterase family 1 , 1998, FEBS letters.

[18]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  K. Kuma,et al.  Evolution of gene families and relationship with organismal evolution: rapid divergence of tissue-specific genes in the early evolution of chordates. , 1996, Molecular biology and evolution.

[20]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[21]  S. Stickel,et al.  Monophyletic origins of the metazoa: an evolutionary link with fungi , 1993, Science.

[22]  S. Hubbard,et al.  Protein tyrosine kinase structure and function. , 2000, Annual review of biochemistry.

[23]  T. Miyata,et al.  Multiple TGF-beta receptor related genes in sponge and ancient gene duplications before the parazoan-eumetazoan split. , 1999, FEBS Letters.

[24]  J. Adachi,et al.  MOLPHY version 2.3 : programs for molecular phylogenetics based on maximum likelihood , 1996 .