A note on regular Ramsey graphs

We prove that there is an absolute constant C>0 so that for every natural n there exists a triangle‐free regular graph with no independent set of size at least \documentclass{article}\usepackage{amssymb}\usepackage{amsbsy}\usepackage[mathscr]{euscript}\footskip=0pc\pagestyle{empty}\begin{document}\({{C}}\sqrt{{{n}}\log{{n}}}\).\end{document} © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 244–249, 2010

[1]  Peter Keevash,et al.  The early evolution of the H-free process , 2009, 0908.0429.

[2]  T. Bohman The triangle-free process , 2008, 0806.4375.

[3]  Alexandr V. Kostochka,et al.  A Short Proof of the Hajnal–Szemerédi Theorem on Equitable Colouring , 2008, Combinatorics, Probability and Computing.

[4]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[5]  Peter Winkler,et al.  On the Size of a Random Maximal Graph , 1995, Random Struct. Algorithms.

[6]  Mario Osvin Pavčević,et al.  Introduction to graph theory , 1973, The Mathematical Gazette.

[7]  C. V. Eynden,et al.  A proof of a conjecture of Erdös , 1969 .