A revisit to synchronization of Lurie systems with time-delay feedback control

This paper revisits the problem of synchronization for general Lurie systems with time-delay feedback control. Differently from most of existing results, the more restrictively slope restrictions on the nonlinearities of Lurie systems are considered in view of the fact that the slope restrictions may improve synchronization conditions compared with the sector ones. The Kalman–Yakubovich–Popov (KYP) lemma and the Schur complement formula are applied to get novel and less conservative synchronization criteria, which have the forms of linear matrix inequalities (LMIs). Numerical examples are presented to illustrate the efficiency of the proposed results.

[1]  Kazuyuki Aihara,et al.  Stability of Genetic Networks With SUM Regulatory Logic: Lur'e System and LMI Approach , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Akio Tsuneda,et al.  A Gallery of attractors from Smooth Chua's equation , 2005, Int. J. Bifurc. Chaos.

[3]  Guanrong Chen,et al.  On Global Exponential Synchronization of Chua Circuits , 2005, Int. J. Bifurc. Chaos.

[4]  K. Aihara,et al.  Synchronization of coupled nonidentical genetic oscillators , 2006, Physical biology.

[5]  Shouming Zhong,et al.  Synchronization criteria of time-delay feedback control system with sector-bounded nonlinearity , 2007, Appl. Math. Comput..

[6]  Guanrong Chen,et al.  On feedback-controlled synchronization of chaotic systems , 2003, Int. J. Syst. Sci..

[7]  A. Rantzer On the Kalman-Yakubovich-Popov lemma , 1996 .

[8]  J. Suykens,et al.  Absolute stability theory and master-slave synchronization , 1997 .

[9]  Guanrong Chen,et al.  Chaos Synchronization of General Lur'e Systems via Time-Delay Feedback Control , 2003, Int. J. Bifurc. Chaos.

[10]  Yanjun Li,et al.  An improved condition for master-slave synchronization of Lur'e systems , 2007 .

[11]  G. Leonov,et al.  Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .

[12]  J. Suykens,et al.  Master-slave synchronization using dynamic output feedback , 1997 .

[13]  L. Chua,et al.  Absolute Stability Theory and the Synchronization Problem , 1997 .

[14]  Johan A. K. Suykens,et al.  Master-Slave Synchronization of Lur'e Systems with Time-Delay , 2001, Int. J. Bifurc. Chaos.

[15]  H.F. Chen,et al.  Open-loop chaotic synchronization of injection-locked semiconductor lasers with gigahertz range modulation , 2000, IEEE Journal of Quantum Electronics.

[16]  G. Leonov,et al.  Frequency Methods in Oscillation Theory , 1995 .

[17]  Eleonora Bilotta,et al.  A Gallery of Chua attractors Part V , 2007, Int. J. Bifurc. Chaos.

[18]  Q. Han New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control , 2007 .

[19]  Jinde Cao,et al.  Synchronization criteria of Lur’e systems with time-delay feedback control , 2005 .

[20]  Kevin M. Passino,et al.  Stability analysis of swarms , 2003, IEEE Trans. Autom. Control..

[21]  Qing-Guo Wang,et al.  Delay-Dependent Synchronization Criterion for Lur'e Systems with Delay Feedback Control , 2006, Int. J. Bifurc. Chaos.

[22]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.