Acoustic properties of periodic micro-structures obtained by additive manufacturing

[1]  Hermann Seitz,et al.  A review on 3D micro-additive manufacturing technologies , 2012, The International Journal of Advanced Manufacturing Technology.

[2]  Martial Sauceau,et al.  New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide , 2011 .

[3]  Jtf Jos Keurentjes,et al.  Sustainable polymer foaming using high pressure carbon dioxide: a review on fundamentals, processes and applications , 2008 .

[4]  Dan Zhao,et al.  Tuned passive control of combustion instabilities using multiple Helmholtz resonators , 2009 .

[5]  S. Suryakumar,et al.  Acoustic properties of additive manufactured narrow tube periodic structures , 2018, Applied Acoustics.

[6]  M. Biot MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .

[7]  V. M. García-Chocano,et al.  Acoustic metamaterial absorbers based on multilayered sonic crystals , 2014, 1405.7200.

[8]  Jun Yang,et al.  Sound absorption by acoustic microlattice with optimized pore configuration. , 2018, The Journal of the Acoustical Society of America.

[9]  Viggo Tarnow,et al.  Airflow resistivity of models of fibrous acoustic materials , 1996 .

[10]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[11]  Keith Attenborough,et al.  Microstructures for lowering the quarter wavelength resonance frequency of a hard-backed rigid-porous layer , 2018 .

[12]  John Banhart,et al.  Porous Metals and Metallic Foams: Current Status and Recent Developments , 2008 .

[13]  Yvan Champoux,et al.  New empirical equations for sound propagation in rigid frame fibrous materials , 1992 .

[14]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[15]  Xiangmin Han,et al.  Polymer nanocomposite foams , 2013 .

[16]  G. Hu,et al.  Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators , 2014 .

[17]  Raymond Panneton,et al.  Dynamic viscous permeability of an open-cell aluminum foam: Computations versus experiments , 2008 .

[18]  Kaufui Wong,et al.  A Review of Additive Manufacturing , 2012 .

[19]  Qibo Mao,et al.  Experimental study for control of sound transmission through double glazed window using optimally tuned Helmholtz resonators , 2010 .

[20]  Jun Yang,et al.  Optimization on microlattice materials for sound absorption by an integrated transfer matrix method. , 2015, The Journal of the Acoustical Society of America.