Tough photonic crystals fabricated by photo-crosslinkage of latex spheres.

A general method to enhance the mechanical properties and solvent resistance of photonic crystals (PCs) has been demonstrated. This is carried out by the crosslinkage of latex spheres via photopolymerization of acrylamide (AAm) infiltrated among them. The crosslinked PAAm enhances the interaction among latex spheres of the PCs film, and contributes to the improvement of mechanical strength and solvent resistance. The result provides a simple approach to make tough PCs films by photo-crosslinkage, and can be extended to a wide variety of materials, will be of great importance for the practical application of PCs.

[1]  Yanlin Song,et al.  Superoleophilic and Superhydrophobic Inverse Opals for Oil Sensors , 2008 .

[2]  Yanlin Song,et al.  A colorful oil-sensitive carbon inverse opal , 2008 .

[3]  Zhongze Gu,et al.  Optical Switching of a Birefringent Photonic Crystal , 2008 .

[4]  Yadong Yin,et al.  Magnetically Tunable Colloidal Photonic Structures in Alkanol Solutions , 2008 .

[5]  Lei Jiang,et al.  Electrically Tunable Polypyrrole Inverse Opals with Switchable Stopband, Conductivity, and Wettability , 2008 .

[6]  Lei Jiang,et al.  Fabrication of closed-cell polyimide inverse opal photonic crystals with excellent mechanical properties and thermal stability , 2008 .

[7]  Lei Jiang,et al.  Colorful humidity sensitive photonic crystal hydrogel , 2008 .

[8]  Zhongze Gu,et al.  Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. , 2008, Analytical chemistry.

[9]  Yongxing Hu,et al.  Highly tunable superparamagnetic colloidal photonic crystals. , 2007, Angewandte Chemie.

[10]  André C. Arsenault,et al.  Photonic-crystal full-colour displays , 2007 .

[11]  Yadong Yin,et al.  Superparamagnetic magnetite colloidal nanocrystal clusters. , 2007, Angewandte Chemie.

[12]  J. M. Cathcart,et al.  Self-Assembly of “Paint-On” Colloidal Crystals Using Poly(styrene-co-N-isopropylacrylamide) Spheres , 2007 .

[13]  Masayoshi Watanabe,et al.  A thermally adjustable multicolor photochromic hydrogel. , 2007, Angewandte Chemie.

[14]  Jingxia Wang,et al.  Fine Control of the Wettability Transition Temperature of Colloidal‐Crystal Films: From Superhydrophilic to Superhydrophobic , 2007 .

[15]  Jingxia Wang,et al.  Hydrogen-Bonding-Driven Wettability Change of Colloidal Crystal Films: From Superhydrophobicity to Superhydrophilicity , 2006 .

[16]  Xu He,et al.  Iridescent Colors from Films Made of Polymeric Core-Shell Particles , 2006 .

[17]  Geoffrey A. Ozin,et al.  Amplified Photochemistry with Slow Photons , 2006 .

[18]  Jingxia Wang,et al.  Simple fabrication of full color colloidal crystal films with tough mechanical strength , 2006 .

[19]  Martin Wegener,et al.  New Route to Three‐Dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates , 2006 .

[20]  Jingxia Wang,et al.  Control over the Wettability of Colloidal Crystal Films by Assembly Temperature , 2006 .

[21]  Pierre Wiltzius,et al.  Humidity-sensing inverse opal hydrogels. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[22]  Justin D. Debord,et al.  Microgel Colloidal Crystals , 2004 .

[23]  Geoffrey A Ozin,et al.  Colloidal crystal films: advances in universality and perfection. , 2003, Journal of the American Chemical Society.

[24]  Cefe López,et al.  Materials Aspects of Photonic Crystals , 2003 .

[25]  J. Zi,et al.  Coloration strategies in peacock feathers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Kazunori Kataoka,et al.  Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique. , 2003, Angewandte Chemie.

[27]  Akira Fujishima,et al.  Structural color and the lotus effect. , 2003, Angewandte Chemie.

[28]  P. Russell,et al.  Photonic Crystal Fibers , 2003, Science.

[29]  S. Kinoshita,et al.  Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  Andreas Stein,et al.  Optical properties of inverse opal photonic crystals , 2002 .

[31]  Tilmann Ruhl,et al.  Colloidal Crystals in Latex Films: Rubbery Opals , 2001 .

[32]  Younan Xia,et al.  Tuning the Photonic Bandgap Properties of Crystalline Arrays of Polystyrene Beads by Annealing at Elevated Temperatures , 2000 .

[33]  Daniel M. Mittleman,et al.  Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids , 1999 .

[34]  Jane F. Bertone,et al.  Thickness Dependence of the Optical Properties of Ordered Silica-Air and Air-Polymer Photonic Crystals , 1999 .

[35]  Winn,et al.  A dielectric omnidirectional reflector , 1998, Science.

[36]  Francisco Meseguer,et al.  Evidence of FCC crystallization of SiO2 nanospheres , 1997 .

[37]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[38]  Miguel Holgado,et al.  3D Long‐range ordering in ein SiO2 submicrometer‐sphere sintered superstructure , 1997 .

[39]  Sanford A. Asher,et al.  Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials , 1996, Science.

[40]  J. Joannopoulos,et al.  High Transmission through Sharp Bends in Photonic Crystal Waveguides. , 1996, Physical review letters.

[41]  John D. Joannopoulos,et al.  Novel applications of photonic band gap materials: Low-loss bends and high Q cavities , 1994 .

[42]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[43]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[44]  A. Stein,et al.  Tuning solvent-dependent color changes of three-dimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications , 2001 .