Quantum Interior Point Methods for Semidefinite Optimization

We present two quantum interior point methods for semidefinite optimization problems, building on recent advances in quantum linear system algorithms. The first scheme, more similar to a classical solution algorithm, computes an inexact search direction and is not guaranteed to explore only feasible points; the second scheme uses a nullspace representation of the Newton linear system to ensure feasibility even with inexact search directions. The second is a novel scheme that might seem impractical in the classical world, but it is well-suited for a hybrid quantum-classical setting. We show that both schemes converge to an optimal solution of the semidefinite optimization problem under standard assumptions. By comparing the theoretical performance of classical and quantum interior point methods with respect to various input parameters, we show that our second scheme obtains a speedup over classical algorithms in terms of the dimension of the problem n, but has worse dependence on other numerical parameters.

[1]  V. Strassen Gaussian elimination is not optimal , 1969 .

[2]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[3]  M. Keyl QUANTUM STATE ESTIMATION AND LARGE DEVIATIONS , 2004 .

[4]  Jacek Gondzio,et al.  Convergence Analysis of an Inexact Feasible Interior Point Method for Convex Quadratic Programming , 2012, SIAM J. Optim..

[5]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[6]  P. A. M. Casares,et al.  A quantum interior-point predictor–corrector algorithm for linear programming , 2019, Journal of Physics A: Mathematical and Theoretical.

[7]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[8]  Ronald de Wolf,et al.  Quantum SDP-Solvers: Better Upper and Lower Bounds , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[9]  Renato D. C. Monteiro,et al.  Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on the Monteiro and Zhang Family of Directions , 1998, SIAM J. Optim..

[10]  Krysta Marie Svore,et al.  Quantum Speed-Ups for Solving Semidefinite Programs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[11]  Ryan O'Donnell,et al.  Efficient quantum tomography , 2015, STOC.

[12]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[13]  Shinji Mizuno,et al.  Global and polynomial-time convergence of an infeasible-interior-point algorithm using inexact computation , 1997, Math. Program..

[14]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[15]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[16]  Sander Gribling,et al.  Applications of optimization to factorization ranks and quantum information theory , 2019 .

[17]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[18]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[19]  P. Tseng Search directions and convergence analysis of some infeasibnle path-following methods for the monoton semi-definite lcp ∗ , 1998 .

[20]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[21]  Florian A. Potra,et al.  A Superlinearly Convergent Primal-Dual Infeasible-Interior-Point Algorithm for Semidefinite Programming , 1998, SIAM J. Optim..

[22]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[23]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[24]  Etienne de Klerk,et al.  Initialization in semidefinite programming via a self-dual skew-symmetric embedding , 1997, Oper. Res. Lett..

[25]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[26]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[27]  Stacey Jeffery,et al.  The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation , 2018, ICALP.

[28]  Yonina C. Eldar A semidefinite programming approach to optimal unambiguous discrimination of quantumstates , 2003, IEEE Trans. Inf. Theory.

[29]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[30]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[31]  Iordanis Kerenidis,et al.  A Quantum Interior Point Method for LPs and SDPs , 2018, ACM Transactions on Quantum Computing.

[32]  Michael J. Todd,et al.  Polynomial Algorithms for Linear Programming , 1988 .

[33]  Kim-Chuan Toh,et al.  Polynomiality of an inexact infeasible interior point algorithm for semidefinite programming , 2004, Math. Program..

[34]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[35]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[36]  Tamás Terlaky,et al.  On the identification of the optimal partition for semidefinite optimization , 2020, INFOR Inf. Syst. Oper. Res..

[37]  Xiaodi Wu,et al.  An Improved Semidefinite Programming Hierarchy for Testing Entanglement , 2015, ArXiv.

[38]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[39]  András Gilyén,et al.  Improvements in Quantum SDP-Solving with Applications , 2018, ICALP.

[40]  Janos Korzak,et al.  Convergence Analysis of Inexact Infeasible-Interior-Point Algorithms for Solving Linear Programming Problems , 2000, SIAM J. Optim..

[41]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[42]  Yin Zhang,et al.  A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming , 1998, Math. Program..

[43]  R. Somma,et al.  Complexity of Quantum State Verification in the Quantum Linear Systems Problem , 2020, 2007.15698.

[44]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[45]  Kim-Chuan Toh,et al.  SDPT3 -- A Matlab Software Package for Semidefinite Programming , 1996 .

[46]  Richard Kueng,et al.  Faster quantum and classical SDP approximations for quadratic binary optimization , 2019, Quantum.

[47]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[48]  Yin Zhang,et al.  On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..

[49]  Daniel E. Steffy,et al.  Iterative Refinement for Linear Programming , 2016, INFORMS J. Comput..

[50]  Nathan Wiebe,et al.  Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics , 2018, STOC.

[51]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[52]  M. Todd A study of search directions in primal-dual interior-point methods for semidefinite programming , 1999 .

[53]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[54]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[55]  Takashi Tsuchiya,et al.  Polynomial Convergence of a New Family of Primal-Dual Algorithms for Semidefinite Programming , 1999, SIAM J. Optim..

[56]  Knud D. Andersen,et al.  The Mosek Interior Point Optimizer for Linear Programming: An Implementation of the Homogeneous Algorithm , 2000 .

[57]  Iordanis Kerenidis,et al.  Quantum algorithms for Second-Order Cone Programming and Support Vector Machines , 2019, Quantum.