Hermes: an Efficient Algorithm for Building Galois Sub-hierarchies
暂无分享,去创建一个
Amedeo Napoli | Marianne Huchard | Anne Berry | Alain Sigayret | M. Huchard | Anne Berry | Alain Sigayret | A. Napoli
[1] Marianne Huchard,et al. Computing interfaces in Java , 2000, Proceedings ASE 2000. Fifteenth IEEE International Conference on Automated Software Engineering.
[2] Anne Berry,et al. Maintaining Class Membership Information , 2002, OOIS Workshops.
[3] Anne Berry,et al. A local approach to concept generation , 2007, Annals of Mathematics and Artificial Intelligence.
[4] Hafedh Mili,et al. Building and maintaining analysis-level class hierarchies using Galois Lattices , 1993, OOPSLA '93.
[5] J. Bordat. Calcul pratique du treillis de Galois d'une correspondance , 1986 .
[6] Bernhard Ganter,et al. Formal Concept Analysis: Mathematical Foundations , 1998 .
[7] Wiebke Petersen,et al. A Set-Theoretical Approach for the Induction of Inheritance Hierarchies , 2004, FGMOL.
[8] Jeremy P. Spinrad,et al. Doubly Lexical Ordering of Dense 0 - 1 Matrices , 1993, Inf. Process. Lett..
[9] Elaine M. Eschen,et al. Consecutive-ones: Handling Lattice Planarity Efficiently , 2007, CLA.
[10] Hervé Leblanc,et al. Galois lattice as a framework to specify building class hierarchies algorithms , 2000, RAIRO Theor. Informatics Appl..
[11] Marianne Huchard,et al. Comparison of Performances of Galois Subhierarchy-building Algorithms , 2007 .
[12] Robert Godin,et al. Comparaison d'algorithmes de construction de hiérarchies de classes , 1999, Obj. Logiciel Base données Réseaux.
[13] Marianne Huchard,et al. Performances of Galois Sub-hierarchy-building Algorithms , 2007, ICFCA.
[14] Anna Lubiw,et al. Doubly lexical orderings of matrices , 1985, STOC '85.
[15] Robert E. Tarjan,et al. Three Partition Refinement Algorithms , 1987, SIAM J. Comput..
[16] Marianne Huchard,et al. ARES, Adding a class and REStructuring Inheritance Hierarchy , 1995, BDA.
[17] Klaus Kabitzsch,et al. Extraction of feature models from formal contexts , 2011, SPLC '11.
[18] Jeremy P. Spinrad,et al. Efficiently Computing a Linear Extension of the Sub-hierarchy of a Concept Lattice , 2005, ICFCA.
[19] H. Leblanc. Sous-hiérarchie de Galois : un modèle pour la construction et l'évolution des hiérarchies d'objets , 2000 .
[20] Alain Sigayret. Data Mining : une approche par les graphes , 2002 .
[21] Wen-Lian Hsu,et al. Fast and Simple Algorithms for Recognizing Chordal Comparability Graphs and Interval Graphs , 1999, SIAM J. Comput..
[22] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[23] Pascal Hitzler,et al. Default Reasoning over Domains and Concept Hierarchies , 2004, KI.
[24] Wen-Lian Hsu,et al. Substitution Decomposition on Chordal Graphs and Applications , 1991, ISA.