Guaranteed velocity error control for the pseudostress approximation of the Stokes equations

The pseudostress approximation of the Stokes equations rewrites the stationary Stokes equations with pure (but possibly inhomogeneous) Dirichlet boundary conditions as another (equivalent) mixed scheme based on a stress in H(div) and the velocity in L2. Any standard mixed finite element function space can be utilized for this mixed formulation, e.g., the Raviart-Thomas discretization which is related to the Crouzeix-Raviart nonconforming finite element scheme in the lowest-order case. The effective and guaranteed a posteriori error control for this nonconforming velocity-oriented discretization can be generalized to the error control of some piecewise quadratic velocity approximation that is related to the discrete pseudostress. The analysis allows for local inf-sup constants which can be chosen in a global partition to improve the estimation. Numerical examples provide strong evidence for an effective and guaranteed error control with very small overestimation factors even for domains with large anisotropy. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1411–1432, 2016

[1]  R. Durán,et al.  A posteriori error estimators for nonconforming finite element methods , 1996 .

[2]  Carsten Carstensen,et al.  Computational Survey on A Posteriori Error Estimators for the Crouzeix–Raviart Nonconforming Finite Element Method for the Stokes Problem , 2014, Comput. Methods Appl. Math..

[3]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[4]  On the best constant in the inf-sup-condition for elongated rectangular domains , 2000 .

[5]  Zhiqiang Cai,et al.  A Multigrid Method for the Pseudostress Formulation of Stokes Problems , 2007, SIAM J. Sci. Comput..

[6]  ON FRIEDRICHS CONSTANT AND HORGAN-PAYNE ANGLE FOR LBB CONDITION , 2014 .

[7]  A. Agouzal A Posteriori Error Estimator for Nonconforming Finite Element Methods , 1994 .

[8]  R. Laugesen,et al.  Minimizing Neumann fundamental tones of triangles: An optimal Poincaré inequality , 2009, 0907.1552.

[9]  Ping Wang,et al.  Least-Squares Methods for Incompressible Newtonian Fluid Flow: Linear Stationary Problems , 2004, SIAM J. Numer. Anal..

[10]  Carsten Carstensen,et al.  Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem , 2013, J. Comput. Appl. Math..

[11]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[12]  Carsten Carstensen,et al.  Effective postprocessing for equilibration a posteriori error estimators , 2013, Numerische Mathematik.

[13]  Kwang-Yeon Kim Fully computable a posteriori error estimates for the Stokes equation without the global inf-sup constant , 2014, Comput. Math. Appl..

[14]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[15]  Willy Dörfler,et al.  Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow , 2005, Math. Comput..

[16]  Martin Vohralík,et al.  A unified framework for a posteriori error estimation for the Stokes problem , 2012, Numerische Mathematik.

[17]  Carsten Carstensen,et al.  Quasi-optimal Adaptive Pseudostress Approximation of the Stokes Equations , 2013, SIAM J. Numer. Anal..

[18]  Dongho Kim,et al.  A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem , 2011, SIAM J. Numer. Anal..

[19]  Carsten Carstensen,et al.  Estimator competition for Poisson problems , 2010 .

[20]  Katja Bachmeier,et al.  Finite Elements Theory Fast Solvers And Applications In Solid Mechanics , 2017 .

[21]  C. Carstensen,et al.  L2 best approximation of the elastic stress in the Arnold–Winther FEM , 2016 .

[22]  G. Stoyan Towards discrete velte decompositions and narrow bounds for inf-sup constants , 1999 .