Influence of growth stress level on wood properties in Poplar I-69 (Populus deltoides Bartr.cv."Lux" ex I-69/55

Six inclined poplar I-69 (Populus deltoids cv. I-69/55) trees were collected for studying the influence of growth stress level on wood properties. Growth stress indicator (GSI) was measured at 8 positions around the periphery of each trunk at breast height and corresponding wood samples were obtained. Wood anatomical, physico-mechanical and chemical characteristics were measured including cell diameter, fibre length, double wall thickness excluding gelatinous layer, lumen diameter after gelatinous layer removal, proportion of wood tissues, basic density, FSP, MOE, compressive strength, shrinkage and chemical composition. Each property was regarded in relation to the growth stress level to be discussed.

[1]  Changhua Fang,et al.  GROWTH STRESSES ARE HIGHLY CONTROLLED BY THE AMOUNT OF G-LAYER IN POPLAR TENSION WOOD. , 2008 .

[2]  Changhua Fang,et al.  Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain , 2007, Wood Science and Technology.

[3]  E. Lowell,et al.  Effects of Lean in Red Alder Trees on Wood Shrinkage and Density , 2007 .

[4]  L. Salmén,et al.  A MODEL FOR THE PREDICTION OF FIBER ELASTICITY , 2007 .

[5]  Ahmed Koubaa,et al.  Interclonal, Intraclonal, and Within-Tree Variation in Fiber Length of Poplar Hybrid Clones , 2007 .

[6]  M. Fournier,et al.  Tension wood and opposite wood in 21 tropical rain forest species. 2. Comparison of some anatomical and ultrastructural criteria , 2006 .

[7]  P. Morey,et al.  Induction of tension wood by 2,4-dinitrophenol and auxins , 1968, Protoplasma.

[8]  J. Sugiyama,et al.  Precautions for the structural analysis of the gelatinous layer in tension wood , 2005 .

[9]  Junji Sugiyama,et al.  On the detachment of gelatinous layer in tension wood fiber , 2020 .

[10]  Hiroyuki Yamamoto,et al.  Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum , 2005, Journal of Wood Science.

[11]  H. Yamamoto,et al.  Generation process of growth stresses in cell walls: Relation between longitudinal released strain and chemical composition , 1993, Wood Science and Technology.

[12]  T. Toratti,et al.  Modelling longitudinal elastic an shrinkage properties of wood , 1989, Wood Science and Technology.

[13]  J. D. Boyd,et al.  Relationship between fibre morphology and shrinkage of wood , 1977, Wood Science and Technology.

[14]  J. Isebrands,et al.  Effects of tension wood on kraft paper from a short-rotation hardwood (Populus “Tristis No. 1”) , 1977, Wood Science and Technology.

[15]  T. E. Timell,et al.  A contribution to the ultrastructure of tension wood fibers , 1969, Wood Science and Technology.

[16]  G. Jeronimidis,et al.  Comparison of mechanical properties of tension and opposite wood in Populus , 2004, Wood Science and Technology.

[17]  J. Ilic,et al.  The relationship between longitudinal growth strain and the occurrence of gelatinous fibers in 10 and 11-year-old Eucalyptus globulus Labill. , 2003, Holz als Roh- und Werkstoff.

[18]  A. Leclercq,et al.  Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. Ghoy when subjected to a gravitational stimulus , 2001 .

[19]  J. Ilic,et al.  Relationship between transverse shrinkage and tension wood from three provenances of Eucalyptus globulus Labill , 2001, Holz als Roh- und Werkstoff.

[20]  Robert Evans,et al.  Relationships between Density, Shrinkage, Extractives Content and Microfibril Angle in Tension Wood from Three Provenances of 10-Year-Old Eucalyptus globulus Labill , 2001 .

[21]  A. Leclercq,et al.  ANATOMICAL CHARACTERISTICS OF TENSION WOOD AND OPPOSITE WOOD IN YOUNG INCLINED STEMS OF POPLAR (POPULUS EURAMERICANA CV 'GHOY') , 2001 .

[22]  Bernard Thibaut,et al.  SHRINKAGE OF THE GELATINOUS LAYER OF POPLAR AND BEECH TENSION WOOD , 2001 .

[23]  J. Sugiyama,et al.  Characterization of tension and normally lignified wood cellulose inPopulus maximowiczii , 1995 .

[24]  Meriem Fournier,et al.  Mesures des déformations résiduelles de croissance à la surface des arbres, en relation avec leur morphologie. Observations sur différentes espèces , 1994 .

[25]  Hiroyuki Yamamoto,et al.  Growth stresses in tension wood: role of microfibrils and lignification , 1994 .

[26]  Masato Yoshida,et al.  Generation process of growth stresses in cell walls II. Growth stresses in tension wood. , 1990 .

[27]  P. Bordonne Module dynamique et frottement intérieur dans le bois : mesures sur poutre flottantes en vibrations naturelles , 1989 .

[28]  R. Aloni Vascular Differentiation Within the Plant , 1988 .

[29]  佐伯 浩,et al.  Cell Wall Organization of Gelatinous Fibers in Tension Wood , 1971 .

[30]  D. G. Arganbright,et al.  Influence of gelatinous fibers on the shrinkage of silver maple , 1970 .

[31]  H. Meier,et al.  Physical and Chemical Properties of the Gelatinous Layer in Tension Wood Fibres of Aspen (Populus tremula L.) , 1966 .

[32]  A. Wardrop The Reaction Anatomy of Arborescent Angiosperms , 1964 .

[33]  A. J. Panshin,et al.  Textbook of Wood Technology , 1964 .

[34]  M. Zimmermann,et al.  The formation of wood in forest trees. , 1964 .

[35]  A. Wardrop,et al.  The nature of reaction wood. VI. The reaction anatomy of seedlings of woody perennials. , 1962 .

[36]  R. W. Kennedy FIBRE LENGTH OF FAST- AND SLOW-GROWN BLACK COTTONWOOD , 1957 .

[37]  A. Wardrop The nature of reaction wood. V. The distribution and formation of tension wood in some species of Eucalyptus , 1956 .

[38]  Oscar Lenz Le Bois de quelques peupliers de culture en Suisse , 1954 .