Numerical simulation of heat transfer during spark plasma sintering of zirconium diboride

[1]  Mehdi Shahedi Asl,et al.  Hot pressing and oxidation behavior of ZrB2–SiC–TaC composites , 2020 .

[2]  Mehdi Shahedi Asl,et al.  Solid solution formation during spark plasma sintering of ZrB2–TiC–graphite composites , 2020 .

[3]  Mehdi Shahedi Asl,et al.  Heat transfer and pressure drop in a ZrB2 microchannel heat sink: A numerical approach , 2020 .

[4]  Mehdi Shahedi Asl,et al.  Spark plasma sintering of quadruplet ZrB2–SiC–ZrC–Cf composites , 2020 .

[5]  Mehdi Shahedi Asl,et al.  A novel ZrB2–C3N4 composite with improved mechanical properties , 2019 .

[6]  Mehdi Shahedi Asl,et al.  Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds , 2019, Ceramics International.

[7]  Mehdi Shahedi Asl,et al.  Spark plasma sintering of TiC–SiCw ceramics , 2019, Ceramics International.

[8]  Mehdi Shahedi Asl,et al.  Influence of vanadium content on the characteristics of spark plasma sintered ZrB2–SiC–V composites , 2019, Journal of Alloys and Compounds.

[9]  Mehdi Shahedi Asl,et al.  Nanoindentation and nanostructural characterization of ZrB2–SiC composite doped with graphite nano-flakes , 2019, Composites Part B: Engineering.

[10]  Mehdi Shahedi Asl,et al.  TiB2–SiC-based ceramics as alternative efficient micro heat exchangers , 2019, Ceramics International.

[11]  Mehdi Shahedi Asl,et al.  Heat transfer, thermal stress and failure analyses in a TiB2 gas turbine stator blade , 2019, Ceramics International.

[12]  Towhid Gholizadeh,et al.  Energy and exergy evaluation of a new bi-evaporator electricity/cooling cogeneration system fueled by biogas , 2019, Journal of Cleaner Production.

[13]  Mehdi Shahedi Asl,et al.  Numerical analyses of heat transfer and thermal stress in a ZrB2 gas turbine stator blade , 2019, Ceramics International.

[14]  Mehdi Shahedi Asl,et al.  Investigation of hot pressed ZrB2–SiC–carbon black nanocomposite by scanning and transmission electron microscopy , 2019, Ceramics International.

[15]  Towhid Gholizadeh,et al.  A new biogas-fueled bi-evaporator electricity/cooling cogeneration system: Exergoeconomic optimization , 2019, Energy Conversion and Management.

[16]  Seyed Ali Delbari,et al.  Hybrid Ti matrix composites with TiB2 and TiC compounds , 2019, Materials Today Communications.

[17]  Mehdi Shahedi Asl,et al.  Spark plasma sintering of ZrB2-based composites co-reinforced with SiC whiskers and pulverized carbon fibers , 2019, International Journal of Refractory Metals and Hard Materials.

[18]  Mehdi Shahedi Asl,et al.  Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite , 2019, Ceramics International.

[19]  Mehdi Shahedi Asl,et al.  Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering , 2019, Ceramics International.

[20]  Shaikh Asad Ali Dilawary,et al.  Effect of TiB2 addition on the elevated temperature tribological behavior of spark plasma sintered Ti matrix composite , 2019, Composites Part B: Engineering.

[21]  Mehdi Shahedi Asl,et al.  A numerical approach to the heat transfer in monolithic and SiC reinforced HfB2, ZrB2 and TiB2 ceramic cutting tools , 2019, Ceramics International.

[22]  Mehdi Shahedi Asl,et al.  A numerical approach to the heat transfer and thermal stress in a gas turbine stator blade made of HfB2 , 2019 .

[23]  Mehdi Shahedi Asl,et al.  Microstructural, thermal and mechanical characterization of TiB2–SiC composites doped with short carbon fibers , 2019, International Journal of Refractory Metals and Hard Materials.

[24]  Mehdi Shahedi Asl,et al.  The effect of thermal contact resistance on the temperature distribution in a WC made cutting tool , 2019 .

[25]  Mehdi Shahedi Asl,et al.  Pressureless sintering of ZrB2 ceramics codoped with TiC and graphite , 2019, International Journal of Refractory Metals and Hard Materials.

[26]  Seyed Ali Delbari,et al.  Reactive spark plasma sintering of TiB2–SiC–TiN novel composite , 2019, International Journal of Refractory Metals and Hard Materials.

[27]  Mehdi Shahedi Asl,et al.  Thermal diffusivity and microstructure of spark plasma sintered TiB2SiC Ti composite , 2019, Ceramics International.

[28]  Seyed Ali Delbari,et al.  Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma , 2019, Ceramics International.

[29]  Mehdi Shahedi Asl,et al.  Spark plasma sintering of Al-doped ZrB2–SiC composite , 2019, Ceramics International.

[30]  Seyed Ali Delbari,et al.  Spark plasma sintering of TiN ceramics codoped with SiC and CNT , 2019, Ceramics International.

[31]  Mehdi Shahedi Asl,et al.  Microstructure–mechanical properties correlation in spark plasma sintered Ti–4.8 wt.% TiB2 composites , 2019, Materials Chemistry and Physics.

[32]  Mehdi Shahedi Asl,et al.  Microstructure and thermomechanical characteristics of spark plasma sintered TiC ceramics doped with nano-sized WC , 2019, Ceramics International.

[33]  F. Mohammadkhani,et al.  Thermodynamic and thermoeconomic analysis of basic and modified power generation systems fueled by biogas , 2019, Energy Conversion and Management.

[34]  P. Cavaliere,et al.  Spark Plasma Sintering: Process Fundamentals , 2019, Spark Plasma Sintering of Materials.

[35]  Mehdi Shahedi Asl,et al.  Spark plasma sintering of TiAl–Ti3AlC2 composite , 2018, Ceramics International.

[36]  Mehdi Shahedi Asl,et al.  Phase evolution during spark plasma sintering of novel Si3N4-doped TiB2–SiC composite , 2018, Materials Characterization.

[37]  Mehdi Shahedi Asl,et al.  Reinforcing effects of SiC whiskers and carbon nanoparticles in spark plasma sintered ZrB2 matrix composites , 2018, Ceramics International.

[38]  Mehdi Shahedi Asl,et al.  Microstructural development during spark plasma sintering of ZrB2–SiC–Ti composite , 2018, Ceramics International.

[39]  V. Senthilkumar,et al.  Optimization of spark plasma sintering parameters for NiTiCu shape memory alloys , 2018, Materials and Manufacturing Processes.

[40]  Mehdi Shahedi Asl,et al.  TEM characterization of spark plasma sintered ZrB2–SiC–graphene nanocomposite , 2018, Ceramics International.

[41]  Mehdi Shahedi Asl,et al.  Effects of spark plasma sintering temperature on densification, hardness and thermal conductivity of titanium carbide , 2018, Ceramics International.

[42]  Mehdi Shahedi Asl,et al.  Microstructural investigation of spark plasma sintered TiB2 ceramics with Si3N4 addition , 2018, Ceramics International.

[43]  Mehdi Shahedi Asl,et al.  A novel ZrB2–VB2–ZrC composite fabricated by reactive spark plasma sintering , 2018, Materials Science and Engineering: A.

[44]  Mehdi Shahedi Asl,et al.  Effects of carbon additives on the properties of ZrB2–based composites: A review , 2018 .

[45]  Mehdi Shahedi Asl,et al.  Sintering behavior of ZrB2–SiC composites doped with Si3N4: A fractographical approach , 2017 .

[46]  Mehdi Shahedi Asl,et al.  Effect of TiB2 content on the characteristics of spark plasma sintered Ti–TiBw composites , 2017 .

[47]  M. Saâdaoui,et al.  Finite element modeling of spark plasma sintering: Application to the reduction of temperature inhomogeneities, case of alumina , 2017 .

[48]  Mehdi Shahedi Asl,et al.  Interfacial phenomena and formation of nano-particles in porous ZrB2–40 vol% B4C UHTC , 2016 .

[49]  C. Estournès,et al.  Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process , 2016 .

[50]  Mehdi Shahedi Asl,et al.  Fractographical characterization of hot pressed and pressureless sintered SiAlON-doped ZrB2-SiC composites , 2015 .

[51]  S. Yamanaka,et al.  Mechanical and thermal properties of bulk ZrB2 , 2015 .

[52]  C. Estournès,et al.  Pulse analysis and electric contact measurements in spark plasma sintering , 2015 .

[53]  Mehdi Shahedi Asl,et al.  A Processing-Microstructure Correlation in ZrB 2 -SiC Composites Hot-pressed under a Load of 10 MPa , 2015 .

[54]  F. S. Moghanlou,et al.  Experimental study on electrohydrodynamically induced heat transfer enhancement in a minichannel , 2014 .

[55]  O. Guillon,et al.  Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments , 2014 .

[56]  Fu-chi Wang,et al.  The sintering mechanism in spark plasma sintering – Proof of the occurrence of spark discharge , 2014 .

[57]  J. Binner,et al.  Synthesis and spark plasma sintering of sub-micron HfB2: Effect of various carbon sources , 2014 .

[58]  K. Sairam,et al.  Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide , 2014 .

[59]  C. Estournès,et al.  Electro-thermal measurements and finite element method simulations of a spark plasma sintering device , 2013 .

[60]  William E Lee,et al.  Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering , 2013 .

[61]  A. K. Suri,et al.  Processing Methods for Ultra High Temperature Ceramics , 2013 .

[62]  M. Nygren,et al.  Spark-plasma sintering of ZrB2 ultra-high-temperature ceramics at lower temperature via nanoscale crystal refinement , 2012 .

[63]  A. Weibel,et al.  Spark plasma sintering of alumina: Study of parameters, formal sintering analysis and hypotheses on the mechanism(s) involved in densification and grain growth , 2011 .

[64]  Lai-fei Cheng,et al.  FEM analysis of the temperature and stress distribution in spark plasma sintering: Modelling and experimental validation , 2010 .

[65]  Y. Sakka,et al.  Pressure effects on temperature distribution during spark plasma sintering with graphite sample , 2009 .

[66]  M. Herrmann,et al.  Temperature distribution for electrically conductive and non-conductive materials during Field Assisted Sintering (FAST) , 2009 .

[67]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[68]  Bikramjit Basu,et al.  Simulation of thermal and electric field evolution during spark plasma sintering , 2009 .

[69]  Antonio Mario Locci,et al.  Consolidation/synthesis of materials by electric current activated/assisted sintering , 2009 .

[70]  Yutaka Kagawa,et al.  Spark Plasma Sintering of Zirconium Diborides , 2008 .

[71]  Mool C. Gupta,et al.  Laser Sintering of ZrB2 , 2008 .

[72]  Dinesh K. Agrawal,et al.  Microwave Sintering of Ceramics, Composites and Metallic Materials, and Melting of Glasses , 2006 .

[73]  K. Vanmeensel,et al.  Modelling of the temperature distribution during field assisted sintering , 2005 .

[74]  Sylvia M. Johnson,et al.  Ultra High Temperature Ceramic Composites , 2005 .

[75]  J. Groza,et al.  Temperature evolution during field activated sintering , 2004 .

[76]  Frédéric Bernard,et al.  Dense nanostructured materials obtained by spark plasma sintering and field activated pressure assisted synthesis starting from mechanically activated powder mixtures , 2004 .

[77]  Zhe Zhao,et al.  Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening , 2002, Nature.

[78]  Yucheng Wang,et al.  Study of temperature field in spark plasma sintering , 2002 .

[79]  Jonathan A. Salem,et al.  Evaluation of ultra-high temperature ceramics foraeropropulsion use , 2002 .

[80]  G. Lian Spark Plasma Sintering Technology , 1997 .

[81]  M. Tokita Trends in Advanced SPS Spark Plasma Sintering Systems and Technology , 1993 .