A weak limit theorem for a class of long-range-type quantum walks in 1d

We derive the weak limit theorem for a class of long range type quantum walks. To do it, we analyze spectral properties of a time evolution operator and prove that modified wave operators exist and are complete.

[1]  Hisashi Morioka,et al.  Detection of edge defects by embedded eigenvalues of quantum walks , 2018, Quantum Information Processing.

[2]  Yutaka Shikano,et al.  From Discrete Time Quantum Walk to Continuous Time Quantum Walk in Limit Distribution , 2013, 1307.3384.

[3]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[4]  Etsuo Segawa,et al.  Resonant-tunneling in discrete-time quantum walk , 2017 .

[5]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[6]  Christian Gérard,et al.  Scattering theory of classical and quantum N-particle systems , 1997 .

[7]  Alain Joye,et al.  Spectral Stability of Unitary Network Models , 2015, 1502.02301.

[8]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[9]  F. A. Grunbaum,et al.  One-Dimensional Quantum Walks with One Defect , 2010, 1010.5762.

[10]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[11]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[12]  Frederick W. Strauch,et al.  Connecting the discrete- and continuous-time quantum walks , 2006 .

[13]  Etsuo Segawa,et al.  Limit theorems for the discrete-time quantum walk on a graph with joined half lines , 2012, Quantum Inf. Comput..

[14]  Anne Boutet de Monvel,et al.  Spectral Theory of N-Body Hamiltonians , 1996 .

[15]  M. Reed,et al.  Methods of Mathematical Physics , 1980 .

[16]  S. Richard,et al.  Quantum walks with an anisotropic coin II: scattering theory , 2018, Letters in Mathematical Physics.

[17]  Svante Janson,et al.  Weak limits for quantum random walks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Norio Konno,et al.  Localization of two-dimensional quantum walks , 2004 .

[19]  Etsuo Segawa,et al.  Limit theorems of a two-phase quantum walk with one defect , 2015, Quantum Inf. Comput..

[20]  Salvador Elías Venegas-Andraca,et al.  Quantum walks: a comprehensive review , 2012, Quantum Information Processing.

[21]  Norio Konno,et al.  Limit distributions of two-dimensional quantum walks , 2008, 0802.2749.

[22]  S. Richard,et al.  Quantum walks with an anisotropic coin I: spectral theory , 2017, 1703.03488.

[23]  Norio Konno,et al.  Quantum Random Walks in One Dimension , 2002, Quantum Inf. Process..

[24]  Norio Konno,et al.  Localization of an inhomogeneous discrete-time quantum walk on the line , 2009, Quantum Inf. Process..

[25]  C. Land,et al.  Probability and Mathematical Statistics-An Introduction , 1973 .

[26]  Etsuo Segawa,et al.  Generator of an abstract quantum walk , 2015, 1508.07473.

[27]  Etsuo Segawa,et al.  Limit Theorems for Discrete-Time Quantum Walks on Trees , 2009, 0903.4508.

[28]  Akito Suzuki,et al.  Asymptotic velocity of a position-dependent quantum walk , 2015, Quantum Inf. Process..

[29]  Kazuyuki Wada,et al.  Absence of wave operators for one-dimensional quantum walks , 2018, Letters in Mathematical Physics.

[30]  Hiromichi Ohno,et al.  Unitary equivalent classes of one-dimensional quantum walks , 2016, Quantum Inf. Process..

[31]  Akito Suzuki,et al.  Localization for a one-dimensional split-step quantum walk with bound states robust against perturbations , 2018, Journal of Mathematical Physics.

[32]  Norio Konno,et al.  A new type of limit theorems for the one-dimensional quantum random walk , 2002, quant-ph/0206103.

[33]  Etsuo Segawa,et al.  Weak limit theorem for a nonlinear quantum walk , 2018, Quantum Inf. Process..

[34]  S. Richard,et al.  New Expressions for the Wave Operators of Schrödinger Operators in $${\mathbb{R}^3}$$R3 , 2012, 1210.0143.

[35]  Etsuo Segawa,et al.  Weak limit theorem of a two-phase quantum walk with one defect , 2014, 1412.4309.

[36]  Akito Suzuki,et al.  Weak limit theorem for a one-dimensional split-step quantum walk , 2018, 1804.05125.

[37]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[38]  Serge Richard,et al.  New Formulae for the Wave Operators for a Rank One Interaction , 2009, 0902.3815.

[39]  Akito Suzuki,et al.  Localization of a multi-dimensional quantum walk with one defect , 2017, Quantum Inf. Process..