The Packet Switching Brain

The computer metaphor has served brain science well as a tool for comprehending neural systems. Nevertheless, we propose here that this metaphor be replaced or supplemented by a new metaphor, the “Internet metaphor,” to reflect dramatic new network theoretic understandings of brain structure and function. We offer a “weak” form and a “strong” form of this metaphor: The former suggests that structures and processes unique to Internet-like architectures (e.g., domains and protocols) can profitably guide our thinking about brains, whereas the latter suggests that one particular feature of the Internet—packet switching—may be instantiated in the structure of certain brain networks, particularly mammalian neocortex.

[1]  R. Butterworth,et al.  Queueing Systems, Vol. II: Computer Applications. , 1977 .

[2]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[3]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[4]  C. Koch,et al.  Sparse Representation in the Human Medial Temporal Lobe , 2006, The Journal of Neuroscience.

[5]  S. Thorpe,et al.  Spike times make sense , 2005, Trends in Neurosciences.

[6]  Robert Cailliau,et al.  How the Web Was Born: The Story of the World Wide Web , 2000 .

[7]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[8]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[9]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[10]  Laurenz Wiskott,et al.  Face recognition by dynamic link matching , 1996 .

[11]  Claude Shannon Information theory in the brain , 2000 .

[12]  Donald W. Davies,et al.  The principles of a data communication network for computers and remote peripherals , 1968, IFIP Congress.

[13]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Kathleen R. Gibson,et al.  Evolutionary Anatomy of the Primate Cerebral Cortex , 2008 .

[15]  R. O’Reilly Biologically Based Computational Models of High-Level Cognition , 2006, Science.

[16]  Terrence J. Sejnowski,et al.  What Are the Projective Fields of Cortical Neurons , 2006 .

[17]  B. Finlay,et al.  Developmental structure in brain evolution , 2001, Behavioral and Brain Sciences.

[18]  Thomas Weiss,et al.  Rapid functional plasticity in the primary somatomotor cortex and perceptual changes after nerve block , 2004, The European journal of neuroscience.

[19]  P. Tobias Evolution of the Human Brain , 2000 .

[20]  David J. Field,et al.  How Close Are We to Understanding V1? , 2005, Neural Computation.

[21]  S. Laughlin,et al.  An Energy Budget for Signaling in the Grey Matter of the Brain , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[22]  Alessandro Vespignani,et al.  Network science , 2007, Annu. Rev. Inf. Sci. Technol..

[23]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[24]  T. Yarkoni Big Correlations in Little Studies: Inflated fMRI Correlations Reflect Low Statistical Power—Commentary on Vul et al. (2009) , 2009, Perspectives on psychological science : a journal of the Association for Psychological Science.

[25]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  David J. Field,et al.  What Is the Goal of Sensory Coding? , 1994, Neural Computation.

[27]  L.F. Abbott,et al.  Gating Multiple Signals through Detailed Balance of Excitation and Inhibition in Spiking Networks , 2009, Nature Neuroscience.

[28]  Rajesh P. N. Rao,et al.  Embodiment is the foundation, not a level , 1996, Behavioral and Brain Sciences.

[29]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[30]  Michel A. Hofman,et al.  Evolutionary Anatomy of the Primate Cerebral Cortex: Brain evolution in hominids: are we at the end of the road? , 2001 .

[31]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[32]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[33]  Mark A. Changizi,et al.  Scaling the Brain and Its Connections , 2007 .

[34]  M. Gazzaniga,et al.  Understanding complexity in the human brain , 2011, Trends in Cognitive Sciences.

[35]  Jörg Lücke,et al.  Glial cells for information routing? , 2007, Cognitive Systems Research.

[36]  H. Pashler,et al.  Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition 1 , 2009, Perspectives on psychological science : a journal of the Association for Psychological Science.

[37]  Dana H. Ballard,et al.  Distributed synchrony , 2002, Neurocomputing.

[38]  D. Tolhurst,et al.  Characterizing the sparseness of neural codes , 2001, Network.

[39]  Michael J. Spivey,et al.  The Continuity Of Mind , 2008 .

[40]  Laurenz Wiskott,et al.  How Does Our Visual System Achieve Shift and Size Invariance , 2004 .

[41]  Kendrick N Kay,et al.  I can see what you see , 2009, Nature Neuroscience.

[42]  J. Bert,et al.  Evolution of the Human Brain , 1972, Nature.

[43]  Refractor Vision , 2000, The Lancet.

[44]  Lawrence G. Roberts,et al.  Multiple computer networks and intercomputer communication , 1967, SOSP.

[45]  John R. Searle,et al.  Minds, brains, and programs , 1980, Behavioral and Brain Sciences.

[46]  T. Griffiths,et al.  Google and the Mind , 2007, Psychological science.

[47]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[48]  O. Sporns,et al.  Motifs in Brain Networks , 2004, PLoS biology.

[49]  Paul Baran,et al.  On Distributed Communications , 1964 .

[50]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[51]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[52]  Daniel J. Graham,et al.  Sparse Coding in the Neocortex , 2007 .

[53]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  W. D. Ray Queueing Systems. Vol. II—Computer Applications , 1977 .

[55]  B. Finlay,et al.  Linked regularities in the development and evolution of mammalian brains. , 1995, Science.

[56]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.