Scalable Decoding for Large-Scale Sensor Networks

Acknowledgements I would like to express my gratitude to my supervisors João Barros and Michael Tüchler for the time and effort they invested during the course of this work. They were a constant source of motivation and guidance. Many thanks also go out to Seong Per Lee and Gerhard Maierbacher for their support.

[1]  Joachim Hagenauer Source-controlled channel decoding , 1995, IEEE Trans. Commun..

[2]  David J. Miller,et al.  A sequence-based approximate MMSE decoder for source coding over noisy channels using discrete hidden Markov models , 1998, IEEE Trans. Commun..

[3]  Kannan Ramchandran,et al.  Distributed compression in a dense microsensor network , 2002, IEEE Signal Process. Mag..

[4]  Michel Minoux,et al.  Graphs and Algorithms , 1984 .

[5]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[6]  A. Rue A Fast and Exact Simulation Algorithm for General Gaussian Markov Random Fields , 1999 .

[7]  Joao Barros,et al.  The Sensor Reachback Problem , 2003 .

[8]  João Barros,et al.  Coding Theorems for the Sensor Reachback Problem with Partially Cooperating Nodes , 2003, Advances in Network Information Theory.

[9]  J. Hagenauer,et al.  To compress or not to compress? , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[10]  M. N. Shanmukha Swamy,et al.  Graphs: Theory and Algorithms , 1992 .

[11]  Andrew C. Singer,et al.  Graphical models for coded data transmission over inter-symbol interference channels , 2004, Eur. Trans. Telecommun..

[12]  Ralf Koetter,et al.  A framework for joint source-channel coding using factor graphs. I. Kozintsev R. Koetter and K. Ramchandran. A FRAMEWORK FOR JOINT SOURCE-CHANNEL CODING USING FACTOR GRAPHS , 1999 .

[13]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[14]  Mikael Skoglund,et al.  Hadamard-Based Soft Decoding for Vector Quantization Over Noisy Channels , 1999, IEEE Trans. Inf. Theory.

[15]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[16]  Toby Berger,et al.  The quadratic Gaussian CEO problem , 1997, IEEE Trans. Inf. Theory.

[17]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[18]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[19]  Zhen Zhang,et al.  On the CEO problem , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[20]  Toby Berger,et al.  An upper bound on the sum-rate distortion function and its corresponding rate allocation schemes for the CEO problem , 2004, IEEE Journal on Selected Areas in Communications.

[21]  Nael B. Abu-Ghazaleh,et al.  A taxonomy of wireless micro-sensor network models , 2002, MOCO.

[22]  João Barros,et al.  Scalable source/channel decoding for large-scale sensor networks , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[23]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[24]  José M. F. Moura,et al.  Matrices with banded inverses: Inversion algorithms and factorization of Gauss-Markov processes , 2000, IEEE Trans. Inf. Theory.

[25]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[26]  R. Koetter,et al.  A factor graph framework for joint source-channel decoding of images , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[27]  Tamás Linder,et al.  Mismatch in high-rate entropy-constrained vector quantization , 2003, IEEE Trans. Inf. Theory.