CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES

We use the first compilation of 72 core-collapse supernovae (SNe) from the Palomar Transient Factory (PTF) to study their observed subtype distribution in dwarf galaxies compared to giant galaxies. Our sample is the largest single-survey, untargeted, spectroscopically classified, homogeneous collection of core-collapse events ever assembled, spanning a wide host-galaxy luminosity range (down to Mr ≈ −14 mag) and including a substantial fraction (>20%) of dwarf (Mr ⩾ −18 mag) hosts. We find more core-collapse SNe in dwarf galaxies than expected and several interesting trends emerge. We use detailed subclassifications of stripped-envelope core-collapse SNe and find that all Type I core-collapse events occurring in dwarf galaxies are either SNe Ib or broad-lined SNe Ic (SNe Ic-BL), while “normal” SNe Ic dominate in giant galaxies. We also see a significant excess of SNe IIb in dwarf hosts. We hypothesize that in lower metallicity hosts, metallicity-driven mass loss is reduced, allowing massive stars that would have appeared as “normal” SNe Ic in metal-rich galaxies to retain some He and H, exploding as Ib/IIb events. At the same time, another mechanism allows some stars to undergo extensive stripping and explode as SNe Ic-BL (and presumably also as long-duration gamma-ray bursts). Our results are still limited by small-number statistics, and our measurements of the observed N(Ib/c)/N(II) number ratio in dwarf and giant hosts (0.25+0.3−0.15 and 0.23+0.11−0.08, respectively; 1σ uncertainties) are consistent with previous studies and theoretical predictions. As additional PTF data accumulate, more robust statistical analyses will be possible, allowing the evolution of massive stars to be probed via the dwarf-galaxy SN population.

[1]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[2]  J. Anderson,et al.  TYPE Ibc SUPERNOVAE IN DISTURBED GALAXIES: EVIDENCE FOR A TOP-HEAVY INITIAL MASS FUNCTION , 2010, 1005.0511.

[3]  L. Chomiuk,et al.  Expanded VLA observations of the Type Ic SN 2010ah (PTF10bzf) , 2010 .

[4]  J. Fynbo,et al.  Do Wolf-Rayet stars have similar locations in hosts as type Ib/c supernovae and long gamma-ray bursts? , 2010, 1002.3164.

[5]  R. Foley,et al.  THE TRANSITIONAL STRIPPED-ENVELOPE SN 2008ax: SPECTRAL EVOLUTION AND EVIDENCE FOR LARGE ASPHERICITY , 2010, 1001.2775.

[6]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[7]  D. Bersier,et al.  Two type Ic supernovae in low-metallicity, dwarf galaxies: Diversity of explosions , 2009, 0910.2248.

[8]  M. Turatto,et al.  The radial distribution of core-collapse supernovae in spiral host galaxies , 2009, 0910.1801.

[9]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[10]  J. Anderson,et al.  Comparisons of the radial distributions of core‐collapse supernovae with those of young and old stellar populations★ , 2009, 0907.0034.

[11]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[12]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[13]  I. Paris,et al.  Relative frequencies of supernovae types: dependence on host galaxy magnitude, galactocentric radius, and local metallicity , 2009, 0905.3986.

[14]  A. Gal-yam,et al.  A massive hypergiant star as the progenitor of the supernova SN 2005gl , 2009, Nature.

[15]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[16]  S. Smartt,et al.  The type IIb SN 2008ax: the nature of the progenitor , 2008, 0805.1913.

[17]  E. Ofek,et al.  The Type IIb SN 2008ax: spectral and light curve evolution , 2008, 0805.1914.

[18]  A. Hakobyan The statistical investigation of type Ib/c and II supernovae and their host galaxies , 2008, 0804.0540.

[19]  E. Ofek,et al.  Massive stars exploding in a He-rich circumstellar medium. I. Type Ibn (SN 2006jc-like) events , 2008, 0801.2277.

[20]  S. Valenti,et al.  Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS) , 2007, 0710.3763.

[21]  John F. Beacom,et al.  Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals , 2007, 0707.0690.

[22]  Princeton,et al.  MEASURED METALLICITIES AT THE SITES OF NEARBY BROAD-LINED TYPE IC SUPERNOVAE AND IMPLICATIONS FOR THE SN-GRB CONNECTION , 2007 .

[23]  R. Kirshner,et al.  Long γ-Ray Bursts and Type Ic Core-Collapse Supernovae Have Similar Locations in Hosts , 2007, 0712.0430.

[24]  Chris L. Fryer,et al.  Constraints on Type Ib/c Supernovae and Gamma‐Ray Burst Progenitors , 2007 .

[25]  S. Smartt,et al.  The Birth Place of the Type Ic Supernova 2007gr , 2007, 0709.2354.

[26]  Chris L. Fryer,et al.  Constraints on Type Ib/c and GRB Progenitors , 2007, astro-ph/0702338.

[27]  Mohan Ganeshalingam,et al.  SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.

[28]  Warren R. Brown,et al.  SDSS 0809+1729: Connections Between Extremely Metal-Poor Galaxies and Gamma-Ray Burst Hosts , 2006, astro-ph/0609246.

[29]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[30]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[31]  Filippo Maria Zerbi,et al.  X-shooter UV- to K-band intermediate-resolution high-efficiency spectrograph for the VLT: status report at the final design review , 2006, SPIE Astronomical Telescopes + Instrumentation.

[32]  C. Conselice,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[33]  P. Wood,et al.  Bump Cepheids in the Magellanic Clouds: Metallicities, the Distances to the LMC and SMC, and the Pulsation-Evolution Mass Discrepancy , 2006, astro-ph/0601225.

[34]  M. Pinsonneault,et al.  The Solar Heavy-Element Abundances. I. Constraints from Stellar Interiors , 2005, astro-ph/0511779.

[35]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[36]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[37]  S. B. Cenko,et al.  A High Angular Resolution Search for the Progenitor of the Type Ic Supernova 2004gt , 2005, astro-ph/0506472.

[38]  S. Smartt,et al.  Luminosity and Mass Limits for the Progenitor of the Type Ic Supernova 2004gt in NGC 4038 , 2005, astro-ph/0506436.

[39]  The SAI catalog of supernovae and radial distributions of supernovae of various types in galaxies , 2004 .

[40]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[41]  I. Hook,et al.  The Gemini–North Multi‐Object Spectrograph: Performance in Imaging, Long‐Slit, and Multi‐Object Spectroscopic Modes , 2004 .

[42]  S. E. Persson,et al.  An asymptotic-giant-branch star in the progenitor system of a type Ia supernova , 2003, Nature.

[43]  Pasadena,et al.  On the relative frequencies of core-collapse supernovae sub-types: The role of progenitor metallicity , 2003, astro-ph/0305376.

[44]  Alison L. Coil,et al.  The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.

[45]  Caltech,et al.  SN 2002cx: The Most Peculiar Known Type Ia Supernova , 2003, astro-ph/0301428.

[46]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[47]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[48]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[49]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[50]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[51]  S. Bergh Distribution of Supernovae in Spiral Galaxies , 1996, astro-ph/9611025.

[52]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[53]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[54]  James E. Gunn,et al.  AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .