A Survey of Xenon Ion Sputter Yield Data and Fits Relevant to Electric Propulsion Spacecraft Integration

A survey of low energy xenon ion impact sputter yields was conducted to provide a more coherent baseline set of sputter yield data and accompanying fits for electric propulsion integration. Data uncertainties are discussed and different available curve fit formulas are assessed for their general suitability. A Bayesian parameter fitting approach is used with a Markov chain Monte Carlo method to provide estimates for the fitting parameters while characterizing the uncertainties for the resulting yield curves.

[1]  P. K. Ray,et al.  On the Measurement of Low Energy Sputtering Yield Using Rutherford Backscattering Spectrometry , 1997 .

[2]  Daren Yu,et al.  Ion sputtering erosion mechanisms of h-BN composite ceramics with textured microstructures , 2014 .

[3]  Joachim Roth,et al.  Revised formulae for sputtering data , 1995 .

[4]  W. D. Wilson,et al.  Calculations of nuclear stopping, ranges, and straggling in the low-energy region , 1977 .

[5]  G. Tynan,et al.  Molybdenum angular sputtering distribution under low energy xenon ion bombardment , 2006 .

[6]  J. Bohdansky A Universal Relation for the Sputtering Yield of Monatomic Solids at Normal Ion Incidence , 1984 .

[7]  J. Bohdansky,et al.  Sputtering behavior of graphite and molybdenum at low bombarding energies , 1984 .

[8]  O. C. Yonts,et al.  Surface Cleaning by Cathode Sputtering , 1960 .

[9]  John D. Williams,et al.  Sputtering Studies of Multi-Component Materials by Weight Loss and Cavity Ring-Down Spectroscopy (Postprint) , 2006 .

[10]  D. Basak,et al.  Sputtering Effects of Xenon Ion Thruster Plume on Common Spacecraft Materials , 2015 .

[11]  P. Sigmund Sputtering by ion bombardment theoretical concepts , 1981 .

[12]  D. Goodwin,et al.  Low energy sputter yields for diamond, carbon-carbon composite, and molybdenum subject to xenon ion bombardment , 2000 .

[13]  G. K. Wehner,et al.  Sputtering Yields for Low Energy He+‐, Kr+‐, and Xe+‐Ion Bombardment , 1962 .

[14]  G. Wehner,et al.  Sputtering Yields at Very Low Bombarding Ion Energies , 1962 .

[15]  M. Shimada,et al.  Carbon atom and cluster sputtering under low-energy noble gas plasma bombardment , 2008 .

[16]  Jie Lian,et al.  Angular dependence of sputtering yield of amorphous and polycrystalline materials , 2008 .

[17]  T. Heyn,et al.  Sputter yields of Mo, Ti, W, Al, Ag under xenon ion incidence , 2011 .

[18]  V. Dose,et al.  The influence of surface roughness on the angular dependence of the sputter yield , 1998 .

[19]  H. H. Andersen,et al.  Sputtering yield measurements , 1981 .

[20]  Roland Preuss,et al.  New fit formulae for the sputtering yield , 2003 .

[21]  P. Sigmund,et al.  Spatial distribution of energy deposited by atomic particles in elastic collisions , 1970 .

[22]  M. Sinha Sputtering of Metals with Low‐Energy Inert Gas Ions: Possible Influence of Trapped Gas , 1968 .

[23]  Iain D. Boyd,et al.  A Review of Spacecraft Material Sputtering By Hall Thruster Plumes , 2001 .

[24]  S. Zurbach,et al.  Sputtering yield of potential ceramics for Hall Eff ect Thruster discharge channel , 2011 .

[25]  Y. Garnier,et al.  Low-energy xenon ion sputtering of ceramics investigated for stationary plasma thrusters , 1999 .

[26]  Azer P Yalin,et al.  Differential sputter yield measurements using cavity ringdown spectroscopy. , 2007, Applied optics.

[27]  Matthew Gibbons,et al.  Initial Use of a 3-D Plasma Simulation System for Predicting Surface Sputtering and Contamination by Hall Thrusters , 2002 .

[28]  John E. Foster,et al.  Low Energy Xenon Ion Sputtering Yield Measurements , 2001 .

[29]  Y. Yamamura,et al.  An empirical formula for angular dependence of sputtering yields , 1984 .

[30]  K. Wittmaack,et al.  Energy and fluence dependence of the sputtering yield of silicon bombarded with argon and xenon , 1979 .

[31]  Sputter yield measurements of thin foils using scanning transmission ion microscopy , 2015 .

[32]  James E. Polk,et al.  Overview of the Development and Mission Application of the Advanced Electric Propulsion System (AEPS) , 2017 .

[33]  J. Bohdansky,et al.  An analytical formula and important parameters for low‐energy ion sputtering , 1980 .

[34]  Mark Johnson,et al.  Differential Sputtering Behavior of Pyrolytic Graphite and Carbon-Carbon Composite Under Xenon Bombardment , 2013 .

[35]  H. F. Winters,et al.  Sputtering of chemisorbed gas (nitrogen on tungsten) by low‐energy ions , 1974 .

[36]  Y. Yamamura,et al.  Angular dependence of sputtering yields of monatomic solids , 1983 .

[37]  John D. Williams,et al.  Influence of residual gases on witness plate measurements during Hall-effect thruster testing , 2010 .

[38]  R. Kolasinski Oblique Angle Sputtering Yield Measurements for Ion Thruster Grid Material s , 2005 .

[39]  V. Smentkowski Trends in sputtering , 2000 .

[40]  Y. Yamamura,et al.  ENERGY DEPENDENCE OF ION-INDUCED SPUTTERING YIELDS FROM MONATOMIC SOLIDS AT NORMAL INCIDENCE , 1996 .

[41]  S. Bhattacharjee,et al.  Application of secondary neutral mass spectrometry in low-energy sputtering yield measurements , 1997 .

[42]  V. Khayms,et al.  Validation of Hall thruster plume sputter model , 2001 .

[43]  L. Vasanelli,et al.  The influence of ion mass and energy on the composition of IBAD oxide films , 1998 .

[44]  Y. Yamamura Contribution of anisotropic velocity distribution of recoil atoms to sputtering yields and angular distributions of sputtered atoms , 1981 .

[45]  Noriaki Itoh,et al.  Energy dependence of the ion-induced sputtering yields of monatomic solids , 1984 .

[46]  P. Zalm,et al.  Energy dependence of the sputtering yield of silicon bombarded with neon, argon, krypton, and xenon ions , 1983 .

[47]  James E. Polk,et al.  Carbon Sputtering Yield Measurements at Grazing Incidence , 2006 .

[48]  Paul J. Wilbur,et al.  XENON SPUTTER YIELD MEASUREMENTS FOR ION THRUSTER MATERIALS , 2003 .

[49]  Azer P. Yalin,et al.  Differential Sputtering Yields of Refractory Metals by Xenon, Krypton, and Argon Ion Bombardment at Normal and Oblique Incidences , 2005 .

[50]  R. Doernera Sputtering yield measurements during low energy xenon plasma bombardment , 2007 .

[51]  O. B. Mantenieks,et al.  A Review of Low Energy Sputtering Theory and Experiments , 1997 .

[52]  J. Roth,et al.  Threshold energy for sputtering and its dependence on angle of incidence , 1993 .

[54]  M. Walker,et al.  Three-Dimensional Model for Erosion of a Hall-Effect Thruster Discharge Channel Wall , 2014 .

[55]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[56]  N. Matsunami,et al.  Theoretical studies on an empirical formula for sputtering yield at normal incidence , 1983 .

[57]  G. Betz,et al.  Sputtering by particle bombardment , 1983 .

[58]  James E. Polk,et al.  Low Energy Sputtering Experiments for Ion Engine Lifetime Assessment , 1999 .

[59]  A. Yalin,et al.  Quartz crystal microbalance-based system for high-sensitivity differential sputter yield measurements. , 2009, The Review of scientific instruments.

[60]  Azer P. Yalin,et al.  Differential Sputter Yields of Boron Nitride, Quartz, and Kapton Due to Low Energy Xe+ Bombardment (Preprint) , 2007 .

[61]  H. Wadley,et al.  Low energy sputtering of nickel by normally incident xenon ions , 2005 .

[62]  M. Seah An accurate semi-empirical equation for sputtering yields, II: for neon, argon and xenon ions , 2005 .

[63]  M. Koedam,et al.  Sputtering of polycrystalline metals by inert gas ions of low energy (100–1000 eV) , 1961 .

[64]  M. Tartz,et al.  Pyrolytic Graphite And Carbon-Carbon Sputter Behaviour Under Xenon Ion Incidence , 2005 .

[65]  Thomas Heyn,et al.  Measuring sputter yields of ceramic materials , 2009 .

[66]  J. Gruber Low-Energy Sputter Erosion of Various Materials in a T 5 , 2001 .