M and P Components of the VEP and their Visual Field Distribution

To study components related to parallel processing of information across the visual field, multi-focal pattern reversal visual evoked potentials (VEPs) were recorded using binary m-sequences. Contrast, chromatic, spatial and temporal characteristics of the stimuli were varied in order to favor contributions from either M or P pathways. Responses were decomposed into two additive components whose behavior was consistent with that of M and P mechanisms. The results suggest that contributions to the VEP from the M pathway precede those from the P pathway, and that the ratio of P/M contributions decreases with eccentricity.

[1]  S. Klein,et al.  The topography of visual evoked response properties across the visual field. , 1994, Electroencephalography and clinical neurophysiology.

[2]  WH Merigan,et al.  Chromatic and achromatic vision of macaques: role of the P pathway , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[4]  D. Dacey The mosaic of midget ganglion cells in the human retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[6]  J. Kulikowski,et al.  Seeing Contour and Colour , 1990, Journal of Cognitive Neuroscience.

[7]  V. Casagrande,et al.  Parallel pathways in macaque monkey striate cortex: anatomically defined columns in layer III. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[8]  V. Perry,et al.  Visual effects of damage to P ganglion cells in macaques , 1992, Visual Neuroscience.

[9]  R. Shapley,et al.  Background light and the contrast gain of primate P and M retinal ganglion cells. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[11]  G S Brindley,et al.  The variability of the human striate cortex. , 1972, The Journal of physiology.

[12]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[13]  J. A. Baro,et al.  A defective visual pathway in children with reading disability. , 1993, The New England journal of medicine.

[14]  Ee Sutter,et al.  A deterministic approach to nonlinear systems analysis , 1992 .

[15]  C. Schroeder,et al.  Striate cortical contribution to the surface-recorded pattern-reversal vep in the alert monkey , 1991, Vision Research.

[16]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  J. Horton,et al.  The representation of the visual field in human striate cortex. A revision of the classic Holmes map. , 1991, Archives of ophthalmology.

[18]  H. Hudnell,et al.  Stationary pattern adaptation and the early components in human visual evoked potentials. , 1990, Electroencephalography and clinical neurophysiology.

[19]  Christopher W. Tyler,et al.  Effects of contrast, orientation and binocularity in the pattern evoked potential , 1985, Vision Research.

[20]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[21]  W. H. Dobelle,et al.  The topography and variability of the primary visual cortex in man. , 1974, Journal of neurosurgery.

[22]  Erich E. Sutter,et al.  The field topography of ERG components in man—I. The photopic luminance response , 1992, Vision Research.

[23]  D. V. van Essen,et al.  The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey , 1984, The Journal of comparative neurology.

[24]  J. Nelson,et al.  Human VEP contrast modulation sensitivity: separation of magno- and parvocellular components. , 1992, Electroencephalography and clinical neurophysiology.

[25]  J. Pokorny,et al.  Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[26]  J. G. Axford,et al.  Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin , 2004, Experimental Brain Research.

[27]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[28]  P Girard,et al.  Visual latencies in cytochrome oxidase bands of macaque area V2. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Brindley Gs,et al.  The variability of the human striate cortex. , 1972 .

[30]  J. Kulikowski,et al.  VEPs and contrast , 1983, Vision Research.

[31]  I. Bodis-Wollner,et al.  The effect of blur and contrast on VEP latency: comparison between check and sinusoidal and grating patterns. , 1987, Electroencephalography and clinical neurophysiology.

[32]  Nikos K. Logothetis,et al.  Parallel pathways in the visual system: Their role in perception at isoluminance , 1991, Neuropsychologia.

[33]  B. Knight,et al.  Contrast gain control in the primate retina: P cells are not X-like, some M cells are , 1992, Visual Neuroscience.

[34]  Mark W. Cannon,et al.  Evoked potential contrast sensitivity in the parafovea: Spatial organization , 1983, Vision Research.

[35]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[36]  I. Bodis-Wollner,et al.  VEPs in humans reveal high and low spatial contrast mechanisms. , 1984, Investigative ophthalmology & visual science.

[37]  A. Ducati,et al.  Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans. , 1988, Electroencephalography and clinical neurophysiology.

[38]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[39]  C. Yiannikas,et al.  The variation of the pattern shift visual evoked response with the size of the stimulus field. , 1983, Electroencephalography and clinical neurophysiology.

[40]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[41]  M. Livingstone,et al.  Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[42]  K. Nakayama,et al.  Steady state visual evoked potentials in the alert primate , 1982, Vision Research.

[43]  Barry B. Lee,et al.  Chapter 7 New views of primate retinal function , 1990 .

[44]  Ronald P. Crick,et al.  The Representation of the Visual Field , 1983 .

[45]  C. Tyler,et al.  PROPERTIES OF LOCALIZED PATTERN EVOKED POTENTIALS * , 1980, Annals of the New York Academy of Sciences.

[46]  E. Switkes,et al.  Functional anatomy of macaque striate cortex. III. Color , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  D. Hubel,et al.  Do the relative mapping densities of the magno- and parvocellular systems vary with eccentricity? , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  S. Schein,et al.  Mapping of retinal and geniculate neurons onto striate cortex of macaque , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  R Shapley,et al.  Visual sensitivity and parallel retinocortical channels. , 1990, Annual review of psychology.

[50]  David Williams,et al.  Modulation transfer of the human eye as a function of retinal eccentricity , 1993 .

[51]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[52]  V. Perry,et al.  The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina , 1991, Neuroscience.

[53]  K J Bloch,et al.  Penetrating the conjunctival barrier. The role of molecular weight. , 1990, Investigative ophthalmology & visual science.

[54]  Carol L. Colby,et al.  The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast , 1983, Vision Research.