Insulin structure and function.

Throughout much of the last century insulin served a central role in the advancement of peptide chemistry, pharmacology, cell signaling and structural biology. These discoveries have provided a steadily improved quantity and quality of life for those afflicted with diabetes. The collective work serves as a foundation for the development of insulin analogs and mimetics capable of providing more tailored therapy. Advancements in patient care have been paced by breakthroughs in core technologies, such as semisynthesis, high performance chromatography, rDNA-biosynthesis and formulation sciences. How the structural and conformational dynamics of this endocrine hormone elicit its biological response remains a vigorous area of study. Numerous insulin analogs have served to coordinate structural biology and biochemical signaling to provide a first level understanding of insulin action. The introduction of broad chemical diversity to the study of insulin has been limited by the inefficiency in total chemical synthesis, and the inherent limitations in rDNA-biosynthesis and semisynthetic approaches. The goals of continued investigation remain the delivery of insulin therapy where glycemic control is more precise and hypoglycemic liability is minimized. Additional objectives for medicinal chemists are the identification of superagonists and insulins more suitable for non-injectable delivery. The historical advancements in the synthesis of insulin analogs by multiple methods is reviewed with the specific structural elements of critical importance being highlighted. The functional refinement of this hormone as directed to improved patient care with insulin analogs of more precise pharmacology is reported.

[1]  James Miller,et al.  Bioavailability of Leuprolide Acetate Following Nasal and Inhalation Delivery to Rats and Healthy Humans , 1992, Pharmaceutical Research.

[2]  P. Katsoyannis,et al.  The importance of the B10 amino acid residue to the biological activity of insulin. [Lys10-B] human insulin , 1982 .

[3]  S. Gammeltoft,et al.  Receptor Binding and Tyrosine Kinase Activation by Insulin Analogues With Extreme Affinities Studied in Human Hepatoma HepG2 Cells , 1991, Diabetes.

[4]  David R. Owens,et al.  New horizons — alternative routes for insulin therapy , 2002, Nature Reviews Drug Discovery.

[5]  G. Dixon,et al.  Regeneration of Insulin Activity from the Separated and Inactive A and B Chains , 1960, Nature.

[6]  S. Madsbad,et al.  Intranasal insulin therapy: the clinical realities , 1995, Diabetologia.

[7]  Stephen B. H. Kent,et al.  In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. , 2009 .

[8]  K. Geisen,et al.  [(A1-beta-Alanine) insulin]. , 1976, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[9]  J. Olefsky,et al.  Diabetes due to secretion of an abnormal insulin. , 1980, The New England journal of medicine.

[10]  M. Weiss,et al.  Hierarchical protein "un-design": insulin's intrachain disulfide bridge tethers a recognition alpha-helix. , 2000, Biochemistry.

[11]  R. B. Merrifield,et al.  The synthesis of bovine insulin by the solid phase method. , 1966, Journal of the American Chemical Society.

[12]  S. Genuth,et al.  The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. , 1993, The New England journal of medicine.

[13]  L. Schäffer,et al.  Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. , 2000, Diabetes.

[14]  P. Katsoyannis,et al.  Analogs of insulin. 1. Synthesis of destripeptide B 28-30 bovine insulin and destripeptide B 28-30 porcine (human) insulin. , 1971, Biochemistry.

[15]  G. S. Gordon,et al.  Nasal absorption of insulin: enhancement by hydrophobic bile salts. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Becker,et al.  Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese non-diabetic subjects. , 2005, Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association.

[17]  V. Vigneaud Trail of Sulfur Research: from Insulin to Oxytocin , 1956 .

[18]  T L Blundell,et al.  The structure of 2Zn pig insulin crystals at 1.5 A resolution. , 1988, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  J. M. Beals,et al.  Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin. , 1995, Structure.

[20]  Sylvie E. Blondelle,et al.  Understanding Biology Using Peptides , 2006 .

[21]  D. Brems,et al.  Improved insulin stability through amino acid substitution. , 1992, Protein engineering.

[22]  P G Katsoyannis,et al.  Critical role of the A2 amino acid residue in the biological activity of insulin: [2-glycine-A]- and [2-alanine-A]insulins. , 1984, Biochemistry.

[23]  L. Vignati,et al.  Reduction of Postprandial Hyperglycemia and Frequency of Hypoglycemia in IDDM Patients on Insulin-Analog Treatment , 1997, Diabetes.

[24]  L. Thim,et al.  Secretion and processing of insulin precursors in yeast. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[25]  W. Fischer,et al.  A shortened insulin with full in vitro potency. , 1985, Biological chemistry Hoppe-Seyler.

[26]  M. Bayne,et al.  Structural analogs of human insulin-like growth factor (IGF) I with altered affinity for type 2 IGF receptors. , 1989, The Journal of biological chemistry.

[27]  J. Still Development of oral insulin: progress and current status. , 2002 .

[28]  K. Polonsky,et al.  Familial hyperinsulinemia due to a structurally abnormal insulin. Definition of an emerging new clinical syndrome. , 1984, The New England journal of medicine.

[29]  R. Mirmira,et al.  Importance of the character and configuration of residues B24, B25, and B26 in insulin-receptor interactions. , 1991, The Journal of biological chemistry.

[30]  S. Shoelson,et al.  Mutations at the dimer, hexamer, and receptor-binding surfaces of insulin independently affect insulin-insulin and insulin-receptor interactions. , 1992, Biochemistry.

[31]  P. Katsoyannis,et al.  Steric requirements at position B12 for high biological activity in insulin. , 1993, Biochemistry.

[32]  J. Meienhofer,et al.  Notizen: Synthese der Insulinketten und ihre Kombination zu insulinaktiven Präparaten , 1963 .

[33]  M. Dreyer,et al.  Efficacy and safety of insulin glulisine in patients with type 1 diabetes. , 2005, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[34]  R. Mirmira,et al.  Role of the phenylalanine B24 side chain in directing insulin interaction with its receptor. Importance of main chain conformation. , 1989, The Journal of biological chemistry.

[35]  T. Sanke,et al.  Three mutant insulins in man , 1983, Nature.

[36]  H. Zahn,et al.  Hormone binding site of the insulin receptor: analysis using photoaffinity-mediated avidin complexing. , 1989, Biological chemistry Hoppe-Seyler.

[37]  P. Katsoyannis,et al.  Synthesis of an insulin analogue embodying a strongly fluorescent moiety, [19-Tryptophan-A]insulin , 1988, Journal of protein chemistry.

[38]  D. Brandenburg Insulin - structure, function, design , 2009 .

[39]  J. Young,et al.  Isolation and characterization of products formed by the action of trypsin on insulin. , 1961, The Journal of biological chemistry.

[40]  K. Itakura,et al.  Chemical synthesis of genes for human insulin. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[41]  T. Blundell,et al.  Receptor-binding region of insulin , 1976, Nature.

[42]  W. Louis,et al.  Effects of intranasal insulin in non-obese type II diabetics. , 1987, Diabetes research and clinical practice.

[43]  G. Homandberg,et al.  Synthesis of peptide bonds by proteinases. Addition of organic cosolvents shifts peptide bond equilibria toward synthesis. , 1978, Biochemistry.

[44]  F. Regnier,et al.  High-performance liquid chromatography of biopolymers. , 1983, Science.

[45]  J. Pitts,et al.  Structure and Function of Insulin , 1984 .

[46]  P. Katsoyannis,et al.  Nature of the B10 amino acid residue. Requirements for high biological activity of insulin. , 2009, International journal of peptide and protein research.

[47]  J. Manson,et al.  Intranasal aerosolized insulin. Mixed-meal studies and long-term use in type I diabetes. , 1985 .

[48]  O. Pedersen,et al.  Genetics of type 2 diabetes mellitus: status and perspectives , 2005, Diabetes, obesity & metabolism.

[49]  D. Brandenburg [Des-PheB1-insulin, a crystalline analogue of bovine insulin]. , 1969 .

[50]  E. Gale Two cheers for inhaled insulin , 2001, The Lancet.

[51]  M. Weiss,et al.  Crystal structure of allo-Ile(A2)-insulin, an inactive chiral analogue: implications for the mechanism of receptor binding. , 2003, Biochemistry.

[52]  P. Katsoyannis,et al.  Synthesis of deamino-A 1 sheep insulin. , 1972, Biochemistry.

[53]  Y. Okada,et al.  The chemical synthesis and biological evaluation of [1-L-alanine-A]-and [1-D-alanine-A]insulins. , 1978, The Journal of biological chemistry.

[54]  J. Brange,et al.  Monomeric insulins obtained by protein engineering and their medical implications , 1988, Nature.

[55]  L. Slieker,et al.  Modifications in the B10 and B26–30 regions of the B chain of human insulin alter affinity for the human IGF-I receptor more than for the insulin receptor , 1997, Diabetologia.

[56]  W. Cefalu,et al.  Efficacy of inhaled human insulin in type 1 diabetes mellitus: a randomised proof-of-concept study , 2001, The Lancet.

[57]  C. Homko,et al.  Comparison of insulin aspart and lispro: pharmacokinetic and metabolic effects. , 2003, Diabetes care.

[58]  J. A. Hoffmann,et al.  Chemical, Physical, and Biologic Properties of Biosynthetic Human Insulin , 1981, Diabetes Care.

[59]  M. Karplus,et al.  Two-dimensional NMR and photo-CIDNP studies of the insulin monomer: assignment of aromatic resonances with application to protein folding, structure, and dynamics. , 1989, Biochemistry.

[60]  P. Brunetti,et al.  Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. , 2000, Diabetes.

[61]  H. Tager,et al.  Role of the COOH-terminal B-chain domain in insulin-receptor interactions. Identification of perturbations involving the insulin mainchain. , 1987, The Journal of biological chemistry.

[62]  P. Gruppuso,et al.  Familial hyperproinsulinemia due to a proposed defect in conversion of proinsulin to insulin. , 1984, The New England journal of medicine.

[63]  J. Flier,et al.  Biological activity of nasally administered insulin in normal subjects. , 1990, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[64]  L. Slieker,et al.  Preparation of an insulin with improved pharmacokinetics relative to human insulin through consideration of structural homology with insulin-like growth factor I. , 1994, Hormone research.

[65]  E. Arbit The physiological rationale for oral insulin administration. , 2004, Diabetes technology & therapeutics.

[66]  P G Katsoyannis,et al.  Interaction between the A2 and A19 amino acid residues is of critical importance for high biological activity in insulin: [19-leucine-A]insulin. , 1984, Biochemistry.

[67]  A. Wollmer,et al.  The solution structure of a superpotent b‐chain‐shortened single‐replacement insulin analogue , 2008, Protein science : a publication of the Protein Society.

[68]  M. A. Khan,et al.  Polymethyacrylate based microparticulates of insulin for oral delivery: preparation and in vitro dissolution stability in the presence of enzyme inhibitors. , 2001, International journal of pharmaceutics.

[69]  G. Dodson,et al.  1H nuclear magnetic resonance study of the histidine residues of insulin. , 1981, Journal of molecular biology.

[70]  H. Zahn,et al.  [Partial synthesis and properties of des-A1-glycine-insulin (author's transl)]. , 1975, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[71]  S. Shoelson,et al.  Heteronuclear 2D NMR studies of an engineered insulin monomer: assignment and characterization of the receptor-binding surface by selective 2H and 13C labeling with application to protein design. , 1991, Biochemistry.

[72]  W. Cefalu Concept, strategies, and feasibility of noninvasive insulin delivery. , 2004, Diabetes care.

[73]  C. Horváth,et al.  High-speed high-performance liquid chromatography of peptides and proteins. , 1995, Journal of chromatography. A.

[74]  J. Conlon Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships , 2001, Peptides.

[75]  M. Kipnes,et al.  Control of postprandial plasma glucose by an oral insulin product (HIM2) in patients with type 2 diabetes. , 2003, Diabetes care.

[76]  R. Obermeier,et al.  Der Methylsulfonyläthyloxycarbonyl-Rest als reversible Aminoschutzgruppe für Insulin , 1975 .

[77]  F. Sanger,et al.  The disulphide bonds of insulin. , 1955, The Biochemical journal.

[78]  B. Riniker,et al.  Totalsynthese von Humaninsulin. IV. Beschreibung der Endstufen , 1977 .

[79]  M. Weiss,et al.  Mapping the functional surface of insulin by design: structure and function of a novel A-chain analogue. , 1996, Journal of molecular biology.

[80]  A. Gundlach,et al.  Relaxin: new peptides, receptors and novel actions , 2003, Trends in Endocrinology & Metabolism.

[81]  M Fickova,et al.  Identification of a mutant human insulin predicted to contain a serine-for-phenylalanine substitution. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[82]  M. Weiss,et al.  Diabetes-associated mutations in insulin: consecutive residues in the B chain contact distinct domains of the insulin receptor. , 2004, Biochemistry.

[83]  Wenhua Jia,et al.  A cavity‐forming mutation in insulin induces segmental unfolding of a surrounding α‐helix , 2002 .

[84]  D. Steiner,et al.  Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal region of the alpha-subunit of the insulin receptor. Identification of a new insulin-binding domain in the insulin receptor. , 1994, The Journal of biological chemistry.

[85]  J. Plank,et al.  A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. , 2005, Diabetes care.

[86]  Satoe H. Nakagawa,et al.  Mutational analysis of invariant valine B12 in insulin: implications for receptor binding. , 2000 .

[87]  L. Heinemann,et al.  Dose response of inhaled dry-powder insulin and dose equivalence to subcutaneous insulin lispro. , 2005, Diabetes care.

[88]  K. Geisen,et al.  Biological activity in vivo of insulin analogues modified in the N-terminal region of the B-chain. , 1986, Biological chemistry Hoppe-Seyler.

[89]  J. Patton,et al.  (D) Routes of delivery: Case studies , 1992 .

[90]  E. Canova‐Davis,et al.  Semisynthesis of insulin: specific activation of the arginine carboxyl group of the B chain of desoctapeptide-(B23--30)-insulin (bovine). , 1981, Biochemistry.

[91]  M. de Gasparo,et al.  Synthesis and biological activity of seventeen analogues of human insulin. , 1979, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[92]  B. Zinman,et al.  Inhaled Insulin Improves Glycemic Control When Substituted for or Added to Oral Combination Therapy in Type 2 Diabetes , 2005, Annals of Internal Medicine.

[93]  S. Stoev,et al.  Synthesis and properties of [A19-(p-fluorophenylalanine)] insulin. , 1988, Biological chemistry Hoppe-Seyler.

[94]  Irving S. Johnson,et al.  The trials and tribulations of producing the first genetically engineered drug , 2003, Nature Reviews Drug Discovery.

[95]  T. Sanke,et al.  Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama). Clinical and functional characteristics of [LeuA3] insulin. , 1986, The Journal of clinical investigation.

[96]  L. Illum,et al.  Intranasal insulin delivery and therapy. , 1999, Advanced drug delivery reviews.

[97]  Peter G Schultz,et al.  Adding amino acids to the genetic repertoire. , 2005, Current opinion in chemical biology.

[98]  P. Schultz,et al.  Expanding the genetic code. , 2002, Chemical communications.

[99]  Raul C Camacho,et al.  Suppression of endogenous glucose production by mild hyperinsulinemia during exercise is determined predominantly by portal venous insulin. , 2004, Diabetes.

[100]  G. Booker,et al.  Structural determinants for high-affinity binding of insulin-like growth factor II to insulin receptor (IR)-A, the exon 11 minus isoform of the IR. , 2004, Molecular endocrinology.

[101]  P. Pilch,et al.  Isolation of a proteolytically derived domain of the insulin receptor containing the major site of cross-linking/binding. , 1989, Biochemistry.

[102]  F. Shojaee-Moradie,et al.  Comparison of the effects on glucose and lipid metabolism of equipotent doses of insulin detemir and NPH insulin with a 16-h euglycaemic clamp , 2005, Diabetologia.

[103]  R. Chance,et al.  Research, Development, Production, and Safety of Biosynthetic Human Insulin , 1993, Diabetes Care.

[104]  T. Forst,et al.  Pulmonary insulin delivery by means of the Technosphere™ drug carrier mechanism , 2005, Expert opinion on drug delivery.

[105]  A. Vaag,et al.  Intranasal Administration of Insulin With Phospholipid as Absorption Enhancer: Pharmacokinetics in Normal Subjects , 1992, Diabetic medicine : a journal of the British Diabetic Association.

[106]  Š. Zórad,et al.  Shortened insulin analogues: marked changes in biological activity resulting from replacement of TyrB26 and N-methylation of peptide bonds in the C-terminus of the B-chain. , 2004, Biochemistry.

[107]  B. Zinman,et al.  Hepatic Glucose Production Is Regulated Both by Direct Hepatic and Extrahepatic Effects of Insulin in Humans , 1996, Diabetes.

[108]  H. Arnqvist,et al.  Direct comparison of insulin lispro and aspart shows small differences in plasma insulin profiles after subcutaneous injection in type 1 diabetes. , 2001, Diabetes care.

[109]  H. Höcker,et al.  Semisynthetic des-(B27-B30)-insulins with modified B26-tyrosine. , 1991, Biological chemistry Hoppe-Seyler.

[110]  L. Slieker,et al.  Insulin and IGF-I analogs: novel approaches to improved insulin pharmacokinetics. , 1993, Advances in experimental medicine and biology.

[111]  Mealtime treatment with insulin analog improves postprandial hyperglycemia and hypoglycemia in patients with non-insulin-dependent diabetes mellitus. Multicenter Insulin Lispro Study Group. , 1997, Archives of internal medicine.

[112]  T. Blundell,et al.  Structure and evolution of insulins: Implications for receptor binding , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[113]  M. Małecki Genetics of type 2 diabetes mellitus. , 2005, Diabetes research and clinical practice.

[114]  L. Sciacca,et al.  ASPB10 insulin induction of increased mitogenic responses and phenotypic changes in human breast epithelial cells: Evidence for enhanced interactions with the insulin‐like growth factor‐I receptor , 1997, Molecular carcinogenesis.

[115]  L. Vignati,et al.  Mealtime treatment with insulin analog improves postprandial hyperglycemia and hypoglycemia in patients with non-insulin-dependent diabetes mellitus. Multicenter Insulin Lispro Study Group. , 1997, Archives of internal medicine.

[116]  H S Tager,et al.  Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor. Steric and conformational effects. , 1986, The Journal of biological chemistry.

[117]  Kun Huang,et al.  Enhancing the activity of insulin at the receptor interface: crystal structure and photo-cross-linking of A8 analogues. , 2004, Biochemistry.

[118]  B. Riniker,et al.  Synthese von Humaninsulin. II. Aufbau des cyclischen Fragments A(1–13)†‡ , 1976 .

[119]  J. Robinson,et al.  Partially unfolded proteins efficiently penetrate cell membranes--implications for oral drug delivery. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[120]  E. Kojro,et al.  Detection of a new hormone contact site within the insulin receptor ectodomain by the use of a novel photoreactive insulin. , 1992, The Journal of biological chemistry.

[121]  M. Weiss,et al.  How Insulin Binds: the B-Chain α-Helix Contacts the L1 β-Helix of the Insulin Receptor , 2004 .

[122]  H S Tager,et al.  Importance of aliphatic side-chain structure at positions 2 and 3 of the insulin A chain in insulin-receptor interactions. , 1992, Biochemistry.

[123]  A. Riggs,et al.  Expression in Escherichia coli of chemically synthesized genes for human insulin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[124]  J. Reginster,et al.  1-YEAR CONTROLLED RANDOMISED TRIAL OF PREVENTION OF EARLY POSTMENOPAUSAL BONE LOSS BY INTRANASAL CALCITONIN , 1987, The Lancet.

[125]  Y. Okada,et al.  Synthesis of two biologically active insulin analogues with modifications at the N-terminal and N- and C-terminal amino acid residues. , 1976, Biochemistry.

[126]  P. Katsoyannis,et al.  [12-asparagine-B] human insulin. An analogue with modification in the hydrophobic core of insulin. , 2009, International journal of peptide and protein research.

[127]  Y. Kiso,et al.  Total synthesis of human insulin by regioselective disulfide formation using the silyl chloride-sulfoxide method , 1993 .

[128]  R. Mirmira,et al.  Disposition of the phenylalanine B25 side chain during insulin-receptor and insulin-insulin interactions. , 1991, Biochemistry.

[129]  H. Klein,et al.  Sustained signalling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. , 1996, The Biochemical journal.

[130]  M. Weiss,et al.  Chiral mutagenesis of insulin's hidden receptor-binding surface: structure of an allo-isoleucine(A2) analogue. , 2002, Journal of molecular biology.

[131]  ENZYME-ASSISTED SEMISYNTHESIS OF HUMAN INSULIN , 1979 .

[132]  J. Whittaker,et al.  Structural biology of insulin and IGF1 receptors: implications for drug design , 2002, Nature Reviews Drug Discovery.

[133]  D. Steiner,et al.  A mutation in the B chain coding region is associated with impaired proinsulin conversion in a family with hyperproinsulinemia. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[134]  L. Thim,et al.  Single chain des-(B30) insulin. Intramolecular crosslinking of insulin by trypsin catalyzed transpeptidation. , 2009, International journal of peptide and protein research.

[135]  A. Fasano,et al.  Modulation of intestinal tight junctions by Zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. , 1997, The Journal of clinical investigation.

[136]  E J Dodson,et al.  X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue. , 1991, Journal of molecular biology.

[137]  Kenji. Suzuki,et al.  Insulin Peptides. X. The Synthesis of the B-Chain of Insulin and Its Combination with Natural or Synthetis A-Chin to Generate Insulin Activity , 1964 .

[138]  M. Spoden,et al.  Structure-function relationships of des-(B26-B30)-insulin. , 2009, International journal of peptide and protein research.

[139]  Claus Kristensen,et al.  Alanine Scanning Mutagenesis of Insulin* , 1997, The Journal of Biological Chemistry.

[140]  P. Katsoyannis,et al.  A superactive insulin: [B10-aspartic acid]insulin(human). , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[141]  M. A. Ruttenberg Human Insulin: Facile Synthesis by Modification of Porcine Insulin , 1972, Science.

[142]  M. Weiss,et al.  Hierarchical protein folding: asymmetric unfolding of an insulin analogue lacking the A7-B7 interchain disulfide bridge. , 2001, Biochemistry.

[143]  J. Eckel,et al.  A novel insulin analog with unique properties: LysB3,GluB29 insulin induces prominent activation of insulin receptor substrate 2, but marginal phosphorylation of insulin receptor substrate 1. , 2003, Diabetes.

[144]  D. Howey,et al.  Biosynthetic Human Proinsulin: Review of Chemistry, in Vitro and in Vivo Receptor Binding, Animal and Human Pharmacology Studies, and Clinical Trial Experience , 1992, Diabetes Care.

[145]  Donald E. Chickering,et al.  Biologically erodable microspheres as potential oral drug delivery systems , 1997, Nature.

[146]  H. Tsuzuki,et al.  Semi-synthesis of human insulin by trypsin-catalysed replacement of Ala-B30 by Thr in porcine insulin , 1979, Nature.

[147]  Z. Dauter,et al.  Structural origins of the functional divergence of human insulin-like growth factor-I and insulin. , 2002, Biochemistry.

[148]  P. Katsoyannis,et al.  The effect of modifications of the A5 and A19 amino acid residues on the biological activity of insulin. [Leu5-A] and [Phe19-A] sheep insulins , 1983 .

[149]  R. B. Merrifield Solid phase peptide synthesis. I. the synthesis of a tetrapeptide , 1963 .

[150]  D R Owens,et al.  Monomeric Insulins and Their Experimental and Clinical Implications , 1990, Diabetes Care.

[151]  K. Bornfeldt,et al.  Binding and biological effects of insulin, insulin analogues and insulin-like growth factors in rat aortic smooth muscle cells. Comparison of maximal growth promoting activities , 1991, Diabetologia.

[152]  P. Katsoyannis,et al.  Chemical synthesis of [des(tetrapeptide B27--30), Tyr(NH2)26-B] and [des(pentapeptide B26--30), Phe(NH2)25-B] bovine insulins. , 2009, International journal of peptide and protein research.

[153]  R. Geiger,et al.  Austausch von A1-Glycin in Rinderinsulin gegen L- und D-Tryptophan , 1982 .

[154]  B. Riniker,et al.  Synthese von Humaninsulin. III. Aufbau des geschützten zweikettigen Fragments A(14‐21) ‐ B(17‐30) , 1976 .

[155]  P. Katsoyannis,et al.  Insulin Peptides. IX. The Synthesis of the A-Chain of Insulin and its Combination with Natural B-Chain to Generate Insulin Activity , 1963 .

[156]  J. Rosenstock,et al.  Basal insulin therapy in type 2 diabetes: 28-week comparison of insulin glargine (HOE 901) and NPH insulin. , 2001, Diabetes care.

[157]  V. Ramesh,et al.  1H n.m.r. studies of insulin. Assignment of resonances and properties of tyrosine residues. , 1985, The Biochemical journal.

[158]  K. Hermansen,et al.  Comparison of the soluble basal insulin analog insulin detemir with NPH insulin: a randomized open crossover trial in type 1 diabetic subjects on basal-bolus therapy. , 2001, Diabetes care.

[159]  I. S. Johnson Human insulin from recombinant DNA technology. , 1983, Science.

[160]  T. Kjeldsen,et al.  Yeast secretory expression of insulin precursors , 2000, Applied Microbiology and Biotechnology.

[161]  G. Weitzel,et al.  Further studies on the three-step-increase in activity due to the aromatic amino acids B24-26 (-Phe-Phe-Tyr-). , 1976, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[162]  K. Geisen,et al.  [(A1-D-alanine) insulin (author's transl)]. , 1975, Hoppe-Seyler´s Zeitschrift für physiologische Chemie.

[163]  S. Gammeltoft Insulin receptors: binding kinetics and structure-function relationship of insulin. , 1984, Physiological reviews.

[164]  G. Bruno,et al.  Sex Differences in Incidence of IDDM in Age-Group 15-29 yr: Higher risk in males in Province of Turin, Italy , 1993, Diabetes Care.

[165]  R. Geiger,et al.  [Bis (t-butyloxycarbonyl) insulin]. , 1971, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[166]  K. Polonsky,et al.  Insulin Wakayama: familial mutant insulin syndrome in Japan , 1987, Diabetologia.

[167]  Zhan-Yun Guo,et al.  Effects of Cysteine to Serine Substitutions in the Two Inter-Chain Disulfide Bonds of Insulin , 2001, Biological chemistry.

[168]  J. Olefsky,et al.  A structurally abnormal insulin causing human diabetes , 1979, Nature.

[169]  D. Owens,et al.  Inhaled human insulin , 2006, Nature Reviews Drug Discovery.

[170]  A. Wollmer,et al.  Shortened insulin with enhanced in vitro potency. , 1987, Biological chemistry Hoppe-Seyler.

[171]  G. Slama,et al.  Efficacy and tolerance of intranasal insulin administered during 4 months in severely hyperglycaemic Type 2 diabetic patients with oral drug failure: a cross‐over study , 2001, Diabetic medicine : a journal of the British Diabetic Association.

[172]  R. Geiger,et al.  Insulinanaloga durch Austausch von Al-Glycin gegen D-Aminosäuren und ω-Aminosäuren , 1980 .

[173]  J. Eckel,et al.  [LysB3, GluB29] insulin: a novel insulin analog with enhanced beta-cell protective action. , 2003, Biochemical and biophysical research communications.

[174]  L. Rosenfeld Insulin: discovery and controversy. , 2002, Clinical chemistry.