On the way towards a generalized entropy maximization procedure

We propose a generalized entropy maximization procedure, which takes into account the generalized averaging procedures and information gain definitions underlying the generalized entropies. This novel generalized procedure is then applied to Renyi and Tsallis entropies. The generalized entropy maximization procedure for Renyi entropies results in the exponential stationary distribution asymptotically for q∈(0,1] in contrast to the stationary distribution of the inverse power law obtained through the ordinary entropy maximization procedure. Another result of the generalized entropy maximization procedure is that one can naturally obtain all the possible stationary distributions associated with the Tsallis entropies by employing either ordinary or q-generalized Fourier transforms in the averaging procedure.

[1]  G. Bagci NONADDITIVE OPEN SYSTEMS AND THE PROBLEM OF CONSTRAINTS , 2008 .

[2]  E. Montroll,et al.  Maximum entropy formalism, fractals, scaling phenomena, and 1/f noise: A tale of tails , 1983 .

[3]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[4]  K. Schulten,et al.  Calculating potentials of mean force from steered molecular dynamics simulations. , 2004, The Journal of chemical physics.

[5]  E. Lutz,et al.  Controlled decoherence in a quantum Lévy kicked rotator. , 2008, 0801.4497.

[6]  I. Tinoco,et al.  Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality , 2002, Science.

[7]  A. G. Bashkirov,et al.  On maximum entropy principle, superstatistics, power-law distribution and Renyi parameter , 2004 .

[8]  C. Tsallis,et al.  The role of constraints within generalized nonextensive statistics , 1998 .

[9]  On the statistical interpretation of generalized entropies , 2006 .

[10]  A. G. Bashkirov Maximum Renyi entropy principle for systems with power-law Hamiltonians. , 2004, Physical review letters.

[11]  J. Klafter,et al.  Lévy statistics in a Hamiltonian system. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  F. Pennini,et al.  Tsallis’ entropy maximization procedure revisited , 2000 .

[13]  M. Masi A step beyond Tsallis and Rényi entropies , 2005, cond-mat/0505107.

[14]  A. G. Bashkirov Renyi entropy as a statistical entropy for complex systems , 2006 .

[15]  S. Koehler,et al.  Rheology of steady-state draining foams. , 2008, Physical review letters.

[16]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[17]  U. Tirnakli,et al.  Generalized entropic structures and non-generality of Jaynes’ Formalism , 2008, 0808.1673.

[18]  T. Oikonomou Tsallis, Rényi and nonextensive Gaussian entropy derived from the respective multinomial coefficients , 2007 .

[19]  Bouchaud,et al.  Subrecoil laser cooling and Lévy flights. , 1994, Physical review letters.

[20]  Bruce J. West,et al.  Fractional Langevin model of memory in financial markets. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  P. Jizba,et al.  Towards information theory for q-nonextensive statistics without q-deformed distributions , 2005, cond-mat/0510092.

[22]  Á. R. Vasconcellos,et al.  Statistical approach to fractal-structured systems: An illustration from the physics of semiconductor heterostructures , 2006 .

[23]  A. Plastino On the universality of thermodynamics' Legendre transform structure , 1997 .

[24]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[25]  Jeffrey M. Hausdorff,et al.  Long-range anticorrelations and non-Gaussian behavior of the heartbeat. , 1993, Physical review letters.

[26]  Sornette,et al.  Statistical model of earthquake foreshocks. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[27]  E. K. Lenzi,et al.  Statistical mechanics based on Renyi entropy , 2000 .

[28]  C. Tsallis,et al.  Escort mean values and the characterization of power-law-decaying probability densities , 2008, 0802.1698.

[29]  Boghosian Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  C. Tsallis,et al.  Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature. , 1995, Physical review letters.