Monte Carlo Methods

This chapter studies Monte Carlo and quasi-Monte Carlo methods for integration, optimization, and probability and expected value estimation. The Monte Carlo method has been widely used for simulations of various physical and mathematical systems and has a very long history that began in 1949 with the seminal paper of Metropolis and Ulam. The name Monte Carlo probably originated from the famous casino in Monaco and reflects the random and repetitive nature of the process, which is similar to gambling in casinos. The quasi-Monte Carlo method is more recent and may be regarded as a deterministic version of Monte Carlo.

[1]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[2]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[3]  Harald Niederreiter Some current issues in quasi-Monte Carlo methods , 2003, J. Complex..

[4]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[5]  A. A. Zhigli︠a︡vskiĭ,et al.  Theory of Global Random Search , 1991 .

[6]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[7]  E. Hlawka Funktionen von beschränkter Variatiou in der Theorie der Gleichverteilung , 1961 .

[8]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[9]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[10]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[11]  Tansu Alpcan,et al.  Randomized algorithms for stability and robustness analysis of high-speed communication networks , 2005, IEEE Transactions on Neural Networks.

[12]  Samuel H. Brooks A Discussion of Random Methods for Seeking Maxima , 1958 .

[13]  Joseph F. Traub,et al.  Complexity and information , 1999, Lezioni Lincee.

[14]  J. Beck,et al.  Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation , 2001 .

[15]  Mathukumalli Vidyasagar,et al.  Learning and Generalization: With Applications to Neural Networks , 2002 .

[16]  Dirk P. Kroese,et al.  Simulation and the Monte Carlo method , 1981, Wiley series in probability and mathematical statistics.

[17]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[18]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[19]  James L. Beck,et al.  Reliability Estimation for Dynamical Systems Subject to Stochastic Excitation using Subset Simulation with Splitting , 2005 .

[20]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[21]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[22]  A. G. Sukharev Optimal strategies of the search for an extremum , 1971 .