Tame parahoric nonabelian Hodge correspondence on curves
暂无分享,去创建一个
[1] Hao Sun,et al. Logahoric Higgs torsors for a complex reductive group , 2021, Mathematische Annalen.
[2] Hao Sun,et al. Tame Parahoric Nonabelian Hodge Correspondence in Positive Characteristic over Algebraic Curves , 2021, 2109.00850.
[3] Hao Sun,et al. Topological invariants of parabolic G-Higgs bundles , 2018, Mathematische Zeitschrift.
[4] A. Mellit. Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers , 2017, Annals of Mathematics.
[5] A. Mellit. Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures) , 2017, Inventiones mathematicae.
[6] Oscar Garcia-Prada,et al. Parabolic Higgs bundles and representations of the fundamental group of a punctured surface into a real group , 2015, Advances in Mathematics.
[7] Peter B. Gothen,et al. Topological mirror symmetry for parabolic Higgs bundles , 2017, Journal of Geometry and Physics.
[8] I. M. I. Riera. Parabolic Higgs Bundles for Real Reductive Lie Groups , 2018, Geometry and Physics: Volume II.
[9] P. Boalch. Wild Character Varieties, Meromorphic Hitchin Systems and Dynkin Diagrams , 2017, Geometry and Physics: Volume II.
[10] I. Biswas,et al. Connections on Parahoric Torsors over Curves , 2017, 1702.03623.
[11] M. Crampin,et al. Cartan Geometries and their Symmetries: A Lie Algebroid Approach , 2016 .
[12] Pietro Tortella. Representations of Atiyah algebroids and logarithmic connections , 2015, 1505.04763.
[13] Xinwen Zhu,et al. Non-abelian Hodge theory for algebraic curves in characteristic p , 2013, 1306.0299.
[14] A. Pianzola,et al. Torsors over the punctured affine line , 2012 .
[15] Zhiwei Yun. Global Springer theory , 2011 .
[16] J. Heinloth,et al. On the motives of moduli of chains and Higgs bundles , 2011, 1104.5558.
[17] U. Bruzzo,et al. Semistable and numerically effective principal (Higgs) bundles , 2009, 0905.2870.
[18] P. Boalch. Riemann–Hilbert for tame complex parahoric connections , 2010, 1003.3177.
[19] C. Simpson. Nonabelian Hodge Theory , 2010 .
[20] T. Mochizuki. Kobayashi-Hitchin correspondence for tame harmonic bundles II , 2006, math/0602266.
[21] C. Simpson. Iterated destabilizing modifications for vector bundles with connection , 2008, 0812.3472.
[22] T. Haines,et al. ON PARAHORIC SUBGROUPS , 2008, 0804.3788.
[23] Kiyoshi Takeuchi,et al. D-Modules, Perverse Sheaves, and Representation Theory , 2007 .
[24] Tamás Hausel,et al. Mixed Hodge polynomials of character varieties , 2006, math/0612668.
[25] K. Mackenzie,et al. General theory of lie groupoids and lie algebroids , 2005 .
[26] I. Biswas. Stable bundles and extension of structure group , 2005 .
[27] F. Murnaghan,et al. LINEAR ALGEBRAIC GROUPS , 2005 .
[28] T. Mochizuki. Kobayashi-Hitchin correspondence for tame harmonic bundles and an application , 2004, Astérisque.
[29] A. Schmitt. Moduli for decorated tuples of sheaves and representation spaces for quivers , 2004, math/0401173.
[30] P. Boalch,et al. Wild non-abelian Hodge theory on curves , 2001, Compositio Mathematica.
[31] Tamás Hausel,et al. Mirror symmetry, Langlands duality, and the Hitchin system , 2002, math/0205236.
[32] Tamás Hausel,et al. Examples of mirror partners arising from integrable systems , 2001, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics.
[33] C. Sabbah. Harmonic metrics and connections with irregular singularities , 1999, math/9905039.
[34] Olivier Biquard. Fibrés de higgs et connexions intégrables : Le cas logarithmique (diviseur lisse) , 1997 .
[35] A. Ramanathan. Moduli for principal bundles over algebraic curves: I , 1996 .
[36] Kôji Yokogawa,et al. INFINITESIMAL DEFORMATION OF PARABOLIC HIGGS SHEAVES , 1995 .
[37] Carlos Simpson,et al. Moduli of representations of the fundamental group of a smooth projective variety I , 1994 .
[38] C. Simpson. Moduli of representations of the fundamental group of a smooth projective variety. II , 1994 .
[39] H. Konno. Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface , 1993 .
[40] C. Simpson. Higgs bundles and local systems , 1992 .
[41] Carlos Simpson,et al. Harmonic bundles on noncompact curves , 1990 .
[42] R. Richardson. Conjugacy classes of $n$-tuples in Lie algebras and algebraic groups , 1988 .
[43] C. Simpson. Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization , 1988 .
[44] Kevin Corlette,et al. Flat $G$-bundles with canonical metrics , 1988 .
[45] N. Hitchin. THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .
[46] S. Donaldson. Twisted harmonic maps and the self-duality equations , 1987 .
[47] N. M. Katz. On the calculation of some differential galois groups , 1987 .
[48] Karen K. Uhlenbeck,et al. On the existence of hermitian‐yang‐mills connections in stable vector bundles , 1986 .
[49] J. Tits,et al. Schémas en groupes Existence d'une donnée radicielle valuée , 1984 .
[50] Donald G. Babbitt,et al. Formal reduction theory of meromorphic differential equations: a group theoretic view. , 1983 .
[51] C. S. Seshadri,et al. Moduli of vector bundles on curves with parabolic structures , 1980 .
[52] A. Ramanathan. Stable principal bundles on a compact Riemann surface , 1975 .
[53] Jacques Tits,et al. Groupes réductifs sur un corps local , 1972 .
[54] Jacques Tits,et al. Groupes Réductifs Sur Un Corps Local , 1972 .
[55] Stephen Rallis,et al. Orbits and Representations Associated with Symmetric Spaces , 1971 .
[56] M. Atiyah. Complex analytic connections in fibre bundles , 1957 .