Tame parahoric nonabelian Hodge correspondence on curves

The nonabelian Hodge correspondence for vector bundles over noncompact curves is adequately described by implementing a weighted filtration on the objects involved. In order to establish a full correspondence between a Dolbeault and a de Rham space for a general complex reductive group $G$, we introduce torsors given by parahoric group schemes in the sense of Bruhat--Tits. Combined with existing results on the Riemann--Hilbert correspondence for logarithmic parahoric connections, this gives a full nonabelian Hodge correspondence from Higgs bundles to fundamental group representations over a noncompact curve beyond the $\text{GL}_n(\mathbb{C})$-case.

[1]  Hao Sun,et al.  Logahoric Higgs torsors for a complex reductive group , 2021, Mathematische Annalen.

[2]  Hao Sun,et al.  Tame Parahoric Nonabelian Hodge Correspondence in Positive Characteristic over Algebraic Curves , 2021, 2109.00850.

[3]  Hao Sun,et al.  Topological invariants of parabolic G-Higgs bundles , 2018, Mathematische Zeitschrift.

[4]  A. Mellit Poincaré polynomials of character varieties, Macdonald polynomials and affine Springer fibers , 2017, Annals of Mathematics.

[5]  A. Mellit Poincaré polynomials of moduli spaces of Higgs bundles and character varieties (no punctures) , 2017, Inventiones mathematicae.

[6]  Oscar Garcia-Prada,et al.  Parabolic Higgs bundles and representations of the fundamental group of a punctured surface into a real group , 2015, Advances in Mathematics.

[7]  Peter B. Gothen,et al.  Topological mirror symmetry for parabolic Higgs bundles , 2017, Journal of Geometry and Physics.

[8]  I. M. I. Riera Parabolic Higgs Bundles for Real Reductive Lie Groups , 2018, Geometry and Physics: Volume II.

[9]  P. Boalch Wild Character Varieties, Meromorphic Hitchin Systems and Dynkin Diagrams , 2017, Geometry and Physics: Volume II.

[10]  I. Biswas,et al.  Connections on Parahoric Torsors over Curves , 2017, 1702.03623.

[11]  M. Crampin,et al.  Cartan Geometries and their Symmetries: A Lie Algebroid Approach , 2016 .

[12]  Pietro Tortella Representations of Atiyah algebroids and logarithmic connections , 2015, 1505.04763.

[13]  Xinwen Zhu,et al.  Non-abelian Hodge theory for algebraic curves in characteristic p , 2013, 1306.0299.

[14]  A. Pianzola,et al.  Torsors over the punctured affine line , 2012 .

[15]  Zhiwei Yun Global Springer theory , 2011 .

[16]  J. Heinloth,et al.  On the motives of moduli of chains and Higgs bundles , 2011, 1104.5558.

[17]  U. Bruzzo,et al.  Semistable and numerically effective principal (Higgs) bundles , 2009, 0905.2870.

[18]  P. Boalch Riemann–Hilbert for tame complex parahoric connections , 2010, 1003.3177.

[19]  C. Simpson Nonabelian Hodge Theory , 2010 .

[20]  T. Mochizuki Kobayashi-Hitchin correspondence for tame harmonic bundles II , 2006, math/0602266.

[21]  C. Simpson Iterated destabilizing modifications for vector bundles with connection , 2008, 0812.3472.

[22]  T. Haines,et al.  ON PARAHORIC SUBGROUPS , 2008, 0804.3788.

[23]  Kiyoshi Takeuchi,et al.  D-Modules, Perverse Sheaves, and Representation Theory , 2007 .

[24]  Tamás Hausel,et al.  Mixed Hodge polynomials of character varieties , 2006, math/0612668.

[25]  K. Mackenzie,et al.  General theory of lie groupoids and lie algebroids , 2005 .

[26]  I. Biswas Stable bundles and extension of structure group , 2005 .

[27]  F. Murnaghan,et al.  LINEAR ALGEBRAIC GROUPS , 2005 .

[28]  T. Mochizuki Kobayashi-Hitchin correspondence for tame harmonic bundles and an application , 2004, Astérisque.

[29]  A. Schmitt Moduli for decorated tuples of sheaves and representation spaces for quivers , 2004, math/0401173.

[30]  P. Boalch,et al.  Wild non-abelian Hodge theory on curves , 2001, Compositio Mathematica.

[31]  Tamás Hausel,et al.  Mirror symmetry, Langlands duality, and the Hitchin system , 2002, math/0205236.

[32]  Tamás Hausel,et al.  Examples of mirror partners arising from integrable systems , 2001, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics.

[33]  C. Sabbah Harmonic metrics and connections with irregular singularities , 1999, math/9905039.

[34]  Olivier Biquard Fibrés de higgs et connexions intégrables : Le cas logarithmique (diviseur lisse) , 1997 .

[35]  A. Ramanathan Moduli for principal bundles over algebraic curves: I , 1996 .

[36]  Kôji Yokogawa,et al.  INFINITESIMAL DEFORMATION OF PARABOLIC HIGGS SHEAVES , 1995 .

[37]  Carlos Simpson,et al.  Moduli of representations of the fundamental group of a smooth projective variety I , 1994 .

[38]  C. Simpson Moduli of representations of the fundamental group of a smooth projective variety. II , 1994 .

[39]  H. Konno Construction of the moduli space of stable parabolic Higgs bundles on a Riemann surface , 1993 .

[40]  C. Simpson Higgs bundles and local systems , 1992 .

[41]  Carlos Simpson,et al.  Harmonic bundles on noncompact curves , 1990 .

[42]  R. Richardson Conjugacy classes of $n$-tuples in Lie algebras and algebraic groups , 1988 .

[43]  C. Simpson Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization , 1988 .

[44]  Kevin Corlette,et al.  Flat $G$-bundles with canonical metrics , 1988 .

[45]  N. Hitchin THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .

[46]  S. Donaldson Twisted harmonic maps and the self-duality equations , 1987 .

[47]  N. M. Katz On the calculation of some differential galois groups , 1987 .

[48]  Karen K. Uhlenbeck,et al.  On the existence of hermitian‐yang‐mills connections in stable vector bundles , 1986 .

[49]  J. Tits,et al.  Schémas en groupes Existence d'une donnée radicielle valuée , 1984 .

[50]  Donald G. Babbitt,et al.  Formal reduction theory of meromorphic differential equations: a group theoretic view. , 1983 .

[51]  C. S. Seshadri,et al.  Moduli of vector bundles on curves with parabolic structures , 1980 .

[52]  A. Ramanathan Stable principal bundles on a compact Riemann surface , 1975 .

[53]  Jacques Tits,et al.  Groupes réductifs sur un corps local , 1972 .

[54]  Jacques Tits,et al.  Groupes Réductifs Sur Un Corps Local , 1972 .

[55]  Stephen Rallis,et al.  Orbits and Representations Associated with Symmetric Spaces , 1971 .

[56]  M. Atiyah Complex analytic connections in fibre bundles , 1957 .