Recent developments in plasma assisted physical vapour deposition

Recent developments in plasma assisted physical vapour deposition (PAPVD) processes are reviewed. A short section on milestones in advances in PAPVD covering the time period from 1938 when the first PAPVD system was patented to the end of the 1980s is followed by a more detailed discussion of some more recent advances, most of which have been related to increases in plasma density. It has been demonstrated that the state of the art PAPVD processes operate in a plasma density range of 1011 to 1013 cm-3. In this range a substantial fraction of the plasma consists of ionized film forming species. Hence, the energy of the condensing film forming species can be directly controlled, as opposed to utilizing indirect energy control with, for example, ionized inert gas bombardment. For a large variety of applications ranging from ceramic film synthesis at conditions far from thermodynamic equilibrium to state of the art metallization technology, such direct energy control of the condensing film forming species is of critical importance, and offers the possibility to engineer the coating microstructure and hence the coating properties.

[1]  E. Broitman,et al.  Growth of CNx/BN:C multilayer films by magnetron sputtering , 2000 .

[2]  S. Kirkpatrick,et al.  Design, plasma studies, and ion assisted thin film growth in an unbalanced dual target magnetron sputtering system with a solenoid coil , 2000 .

[3]  J. Schneider,et al.  A novel pulsed magnetron sputter technique utilizing very high target power densities , 1999 .

[4]  André Anders,et al.  Approaches to rid cathodic arc plasmas of macro-and nanoparticles : a review , 1999 .

[5]  A. Brudnik,et al.  Optical emission spectroscopy of self-sustained magnetron sputtering , 1999 .

[6]  Ian G. Brown,et al.  Recent advances in surface processing with metal plasma and ion beams , 1999 .

[7]  S. Berg,et al.  Modeling of the deposition of stoichiometric Al2O3 using nonarcing direct current magnetron sputtering , 1998 .

[8]  O. Sergeev,et al.  Vacuum arc ion and plasma source Raduga 5 for materials treatment , 1998 .

[9]  A. Ryabchikov,et al.  INVESTIGATIONS OF FORMING METAL-PLASMA FLOWS FILTERED FROM MICROPARTICLE FRACTION IN VACUUM ARC EVAPORATORS , 1998 .

[10]  S. Rossnagel Directional and ionized physical vapor deposition for microelectronics applications , 1998 .

[11]  Ian G. Brown,et al.  CATHODIC ARC DEPOSITION OF FILMS , 1998 .

[12]  Shoso Shingubara,et al.  Directional copper deposition using dc magnetron self-sputtering , 1998 .

[13]  J. Schneider,et al.  Very-high-rate reactive sputtering of alumina hard coatings , 1997 .

[14]  S. Corcoran,et al.  Synthesis of sub-surface oxide layers by hybrid metal–gas co-implantation into metals , 1997 .

[15]  R. Scholl Power systems for reactive sputtering of insulating films , 1997 .

[16]  J. Schneider,et al.  CRYSTALLINE ALUMINA DEPOSITED AT LOW TEMPERATURES BY IONIZED MAGNETRON SPUTTERING , 1997 .

[17]  I. Brown,et al.  Deposition of mullite and mullite-like coatings on silicon carbide by dual-source metal plasma immersion , 1997 .

[18]  S. Shingubara,et al.  Optical emission spectroscopy of high density metal plasma formed during magnetron sputtering , 1997 .

[19]  J. Hopwood,et al.  Quenching of electron temperature and electron density in ionized physical vapor deposition , 1997 .

[20]  A. Anders Ion charge state distributions of vacuum arc plasmas: The origin of species , 1997 .

[21]  O. Zywitzki,et al.  Influence of coating parameters on the structure and properties of Al2O3 layers reactively deposited by means of pulsed magnetron sputtering , 1996 .

[22]  Debora D. Mayer Revelations Beneath the Surface: Paper and Fiber Microscopy , 1996 .

[23]  Lars Hultman,et al.  LOW-TEMPERATURE DEPOSITION OF CUBIC BN:C FILMS BY UNBALANCED DIRECT CURRENT MAGNETRON SPUTTERING OF A B4C TARGET , 1996 .

[24]  M. S. Chae,et al.  Properties of cathodic arc deposited high-temperature superconducting composite thin films on Ag substrates , 1996 .

[25]  D. Mckenzie,et al.  Interactions of the directed plasma from a cathodic arc with electrodes and magnetic fields , 1996 .

[26]  A. Anders Metal plasma immersion ion implantation and deposition : a review , 1996 .

[27]  W. Sproul New Routes in the Preparation of Mechanically Hard Films , 1996, Science.

[28]  M. Lieberman,et al.  Plasma Generation for Materials Processing , 1996 .

[29]  P. O’Keeffe,et al.  Energy-selective electron cyclotron resonance plasma for controlled surface reaction processes , 1996 .

[30]  A. Anders,et al.  Macroparticle filtering of high-current vacuum arc plasmas , 1996, Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum.

[31]  A. Anders,et al.  S-shaped magnetic macroparticle filter for cathodic arc deposition , 1996, Proceedings of 17th International Symposium on Discharges and Electrical Insulation in Vacuum.

[32]  D. Mckenzie,et al.  A study of filter transport mechanisms in filtered cathodic vacuum arcs , 1996 .

[33]  C. Doughty,et al.  Cu metallization using a permanent magnet electron cyclotron resonance microwave plasma/sputtering hybrid system , 1996 .

[34]  J. Musil,et al.  Low pressure magnetron sputtering and selfsputtering discharges , 1996 .

[35]  W. M. Posadowski,et al.  Sustained self sputtering of different materials using dc magnetron , 1995 .

[36]  J. Hopwood,et al.  Mechanisms for highly ionized magnetron sputtering , 1995 .

[37]  S. George,et al.  H2O adsorption kinetics on Si(111)7×7 and Si(111)7×7 modified by laser annealing , 1995 .

[38]  Dejun Li,et al.  Ionized magnetron sputter deposition of amorphous carbon nitride thin films , 1995 .

[39]  T. Tsui,et al.  Hard boron oxide thin‐film deposition using electron cyclotron resonance microwave plasmas , 1994 .

[40]  J. Abelson,et al.  Mass and energy resolved detection of ions and neutral sputtered species incident at the substrate during reactive magnetron sputtering of Ti in mixed Ar+N2 mixtures , 1994 .

[41]  A. Anders,et al.  Effect of duct bias on transport of vacuum arc plasmas through curved magnetic filters , 1994 .

[42]  I. Ivanov,et al.  Influence of an external axial magnetic field on the plasma characteristics and deposition conditions during direct current planar magnetron sputtering , 1994 .

[43]  Jeffrey Hopwood,et al.  Metal ion deposition from ionized mangetron sputtering discharge , 1994 .

[44]  J. Hopwood,et al.  Magnetron sputter deposition with high levels of metal ionization , 1993 .

[45]  Klaus Goedicke,et al.  Pulsed magnetron sputter technology , 1993 .

[46]  F. E. Turene,et al.  Copper deposition by electron cyclotron resonance plasma , 1993 .

[47]  Z. Radzimski,et al.  Sustained self‐sputtering using a direct current magnetron source , 1993 .

[48]  I. Petrov,et al.  Average energy deposited per atom : a universal parameter for describing ion-assisted film growth ? , 1993 .

[49]  S. Berg,et al.  Reactive sputtering using two reactive gases, experiments and computer modeling , 1993 .

[50]  I. Petrov,et al.  Effects of high‐flux low‐energy (20–100 eV) ion irradiation during deposition on the microstructure and preferred orientation of Ti0.5Al0.5N alloys grown by ultra‐high‐vacuum reactive magnetron sputtering , 1993 .

[51]  I. Petrov,et al.  Use of an externally applied axial magnetic field to control ion/neutral flux ratios incident at the substrate during magnetron sputter deposition , 1992 .

[52]  André Anders,et al.  Pulsed dye laser diagnostics of vacuum arc cathode spots , 1992 .

[53]  Michael Dr Scherer,et al.  Reactive alternating current magnetron sputtering of dielectric layers , 1992 .

[54]  G. Collins,et al.  Plasma immersion ion implantation: duplex layers from a single process , 1992 .

[55]  H. Blom,et al.  Modeling of multicomponent reactive sputtering , 1991 .

[56]  K. Yu,et al.  Novel metal ion surface modification technique , 1991 .

[57]  W. Sproul,et al.  High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system , 1990 .

[58]  J. Musil,et al.  Sputtering systems with magnetically enhanced ionization for ion plating of TiN films , 1990 .

[59]  J. Conrad,et al.  Model of plasma source ion implantation in planar, cylindrical, and spherical geometries , 1990 .

[60]  F. Meyer,et al.  Epitaxial growth of single-crystal Si1−xGex on Si(100) by ion beam sputter deposition , 1990 .

[61]  A. G. Spencer,et al.  Substrate effects from an unbalanced magnetron , 1990 .

[62]  I. Petrov,et al.  Effects of an unbalanced magnetron in a unique dual-cathode, high rate reactive sputtering system , 1990 .

[63]  R. Kukla,et al.  A highest rate self-sputtering magnetron source , 1990 .

[64]  J. Musil,et al.  Reactive sputtering of TiN films at large substrate to target distances , 1990 .

[65]  J. Musil,et al.  TiN films grown by reactive magnetron sputtering with enhanced ionization at low discharge pressures , 1990 .

[66]  D. Teer Technical note: A magnetron sputter ion-plating system , 1989 .

[67]  J. Musil,et al.  Reactive deposition of tin films using an unbalanced magnetron , 1989 .

[68]  V. Poulek,et al.  Reactive deposition of hard coatings , 1989 .

[69]  S. Goldsmith,et al.  Principles and applications of vacuum arc coatings , 1989 .

[70]  A. Astarita,et al.  Surface Modification Technologies , 2019, Key Engineering Materials.

[71]  J. S. Logan,et al.  High‐rate reactive sputter deposition of aluminum oxide , 1989 .

[72]  A. G. Spencer,et al.  The formation and control of direct current magnetron discharges for the high‐rate reactive processing of thin films , 1989 .

[73]  M. Lieberman,et al.  Plasma Immersion Ion Implantation for Impurity Gettering in Silicon , 1989 .

[74]  A. Badzian Superhard material comparable in hardness to diamond , 1988 .

[75]  D. Teer A magnetron sputter ion plating system , 1988 .

[76]  J. Conrad,et al.  Plasma source ion implantation: A new, cost-effective, non-line-of-sight technique for ion implantation of materials , 1988 .

[77]  I. Donnelly,et al.  Plasma immersion ion implantation using plasmas generated by radio frequency techniques , 1988 .

[78]  W. D. Westwood,et al.  A quasi‐direct‐current sputtering technique for the deposition of dielectrics at enhanced rates , 1988 .

[79]  I. Ivanov,et al.  Electrostatic Probe Measurements in the Glow Discharge Plasma of a D. C. Magnetron Sputtering System , 1988 .

[80]  A. G. Spencer,et al.  Activation of reactive sputtering by a plasma beam from an unbalanced magnetron , 1988 .

[81]  J. R. Conrad,et al.  Plasma source ion-implantation technique for surface modification of materials , 1987 .

[82]  Sören Berg,et al.  Modeling of reactive sputtering of compound materials , 1987 .

[83]  N. Savvides,et al.  Unbalanced dc magnetrons as sources of high ion fluxes , 1986 .

[84]  N. Savvides,et al.  Charged particle fluxes from planar magnetron sputtering sources , 1986 .

[85]  A. Matthews Developments in ionization assisted processes , 1985 .

[86]  A. Durandet,et al.  Plasma etching in magnetic multipole microwave discharge , 1984 .

[87]  J. Greene,et al.  Epitaxial crystal growth by sputter deposition: Applications to semiconductors. Part 2 , 1983 .

[88]  R. Bunshah The activated reactive evaporation process: Developments and applications , 1981 .

[89]  A. Matthews,et al.  Characteristics of a thermionically assisted triode ion-plating system☆ , 1981 .

[90]  A. Matthews,et al.  Deposition of Ti-N compounds by thermionically assisted triode reactive ion plating , 1980 .

[91]  K. Bewilogua,et al.  Preparation of hard coatings by ion beam methods , 1979 .

[92]  L. Pranevicius,et al.  Structure and properties of deposits grown by ion-beam-activated vacuum deposition techniques☆ , 1979 .

[93]  Keiji Tanaka,et al.  Photo-induced optical changes in amorphous AsS films , 1978 .

[94]  R. Bunshah,et al.  The Effect of Substrate Temperature on the Structure of Titanium Carbide Deposited by Activated Reactive Evaporation , 1972 .

[95]  R. Bunshah,et al.  Activated Reactive Evaporation Process for High Rate Deposition of Compounds , 1972 .

[96]  M. Faraday X. The Bakerian Lecture. —Experimental relations of gold (and other metals) to light , 1857, Philosophical Transactions of the Royal Society of London.

[97]  William Robert Grove,et al.  VII. On the electro-chemical polarity of gases , 1852, Philosophical Transactions of the Royal Society of London.