The gut microbiota-induced kynurenic acid recruits GPR35-positive macrophages to promote experimental encephalitis.

[1]  H. Madhani,et al.  Platelets and mast cells promote pathogenic eosinophil recruitment during invasive fungal infection via the 5-HIAA-GPR35 ligand-receptor system. , 2023, Immunity.

[2]  H. Weiner,et al.  Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting , 2023, Cell.

[3]  C. Benoist,et al.  The gut microbiota promotes distal tissue regeneration via RORγ+ regulatory T cell emissaries. , 2023, Immunity.

[4]  A. Bevilacqua,et al.  Gut-Microbiota, and Multiple Sclerosis: Background, Evidence, and Perspectives , 2023, Nutrients.

[5]  Xuan Huang,et al.  ERR-activated GPR35 promotes immune infiltration level of macrophages in gastric cancer tissues , 2022, Cell Death Discovery.

[6]  A. Mohamadkhani,et al.  Dynamic changes in kynurenine pathway metabolites in multiple sclerosis: A systematic review , 2022, Frontiers in Immunology.

[7]  A. MacKenzie-Graham,et al.  Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis , 2022, Frontiers in Molecular Neuroscience.

[8]  F. Shi,et al.  Bone marrow hematopoiesis drives multiple sclerosis progression , 2022, Cell.

[9]  Jeff Trent,et al.  Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial , 2022, Nature Medicine.

[10]  J. Cyster,et al.  GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA , 2022, Cell.

[11]  A. Regev,et al.  Stem-like intestinal Th17 cells give rise to pathogenic effector T cells during autoimmunity , 2021, Cell.

[12]  J. Niess,et al.  GPR35 in Intestinal Diseases: From Risk Gene to Function , 2021, Frontiers in Immunology.

[13]  M. Leboyer,et al.  Brain Versus Blood: A Systematic Review on the Concordance Between Peripheral and Central Kynurenine Pathway Measures in Psychiatric Disorders , 2021, Frontiers in Immunology.

[14]  Susumu Tomono,et al.  Clostridium butyricum MIYAIRI 588 Modifies Bacterial Composition under Antibiotic-Induced Dysbiosis for the Activation of Interactions via Lipid Metabolism between the Gut Microbiome and the Host , 2021, Biomedicines.

[15]  Xiuli Lin,et al.  Constipation induced gut microbiota dysbiosis exacerbates experimental autoimmune encephalomyelitis in C57BL/6 mice , 2021, Journal of translational medicine.

[16]  T. Kanai,et al.  CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells , 2021, Nature Communications.

[17]  M. Doyle,et al.  Interfacing Seurat with the R tidy universe , 2021, bioRxiv.

[18]  T. Karlsen,et al.  Activation of the GPR35 pathway drives angiogenesis in the tumour microenvironment , 2021, Gut.

[19]  Toshiro Sato,et al.  An organoid-based organ-repurposing approach to treat short bowel syndrome , 2021, Nature.

[20]  N. Kamada,et al.  The Butyrate-Producing Bacterium Clostridium butyricum Suppresses Clostridioides difficile Infection via Neutrophil- and Antimicrobial Cytokine–Dependent but GPR43/109a-Independent Mechanisms , 2021, The Journal of Immunology.

[21]  T. Kanai,et al.  C-C motif chemokine receptor 9 regulates obesity-induced insulin resistance via inflammation of the small intestine in mice , 2021, Diabetologia.

[22]  Paul J. McMurdie,et al.  Butyrate-producing human gut symbiont, Clostridium butyricum, and its role in health and disease , 2021, Gut microbes.

[23]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[24]  S. Damak,et al.  Activation of the G-protein coupled receptor GPR35 by human milk oligosaccharides through different pathways , 2020, Scientific Reports.

[25]  Christopher C. Overall,et al.  Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract , 2020, Scientific Reports.

[26]  M. Hattori,et al.  Gut microorganisms act together to exacerbate inflammation in spinal cords , 2020, Nature.

[27]  P. Hruz,et al.  Lysophosphatidic Acid-Mediated GPR35 Signaling in CX3CR1+ Macrophages Regulates Intestinal Homeostasis. , 2020, Cell reports.

[28]  M. Hattori,et al.  The liver–brain–gut neural arc maintains the Treg cell niche in the gut , 2020, Nature.

[29]  L. Vécsei,et al.  Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives , 2020, Cells.

[30]  Gavin M Douglas,et al.  PICRUSt2 for prediction of metagenome functions , 2020, Nature Biotechnology.

[31]  D. Littman,et al.  Redundant cytokine requirement for intestinal microbiota-induced Th17 cell differentiation in draining lymph nodes , 2020, bioRxiv.

[32]  S. Miyake,et al.  Gut dysbiosis and multiple sclerosis. , 2020, Clinical immunology.

[33]  L. Boon,et al.  Interleukin-17A Serves a Priming Role in Autoimmunity by Recruiting IL-1β-Producing Myeloid Cells that Promote Pathogenic T Cells. , 2020, Immunity.

[34]  M. Ishii,et al.  Identification of a novel arthritis-associated osteoclast precursor macrophage regulated by FoxM1 , 2019, Nature Immunology.

[35]  M. Shinohara,et al.  Pattern Recognition Receptors in Multiple Sclerosis and Its Animal Models , 2019, Front. Immunol..

[36]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[37]  P. Rosenstiel,et al.  Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology , 2019, Nature Communications.

[38]  J. Schrenzel,et al.  Disrupting Myelin-Specific Th17 Cell Gut Homing Confers Protection in an Adoptive Transfer Experimental Autoimmune Encephalomyelitis. , 2019, Cell reports.

[39]  Katsuaki Sato,et al.  Plasmacytoid dendritic cells protect against immune-mediated acute liver injury via IL-35. , 2019, The Journal of clinical investigation.

[40]  William A. Walters,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[41]  Xiuli Lin,et al.  Gut Microbiota Interventions With Clostridium butyricum and Norfloxacin Modulate Immune Response in Experimental Autoimmune Encephalomyelitis Mice , 2019, Front. Immunol..

[42]  Aviv Regev,et al.  Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis , 2019, Cell.

[43]  D. Im,et al.  Lodoxamide Attenuates Hepatic Fibrosis in Mice: Involvement of GPR35 , 2019, Biomolecules & therapeutics.

[44]  G. Castelo-Branco,et al.  An Atlas of Vagal Sensory Neurons and Their Molecular Specialization , 2019, Cell reports.

[45]  D. Esterházy,et al.  Compartmentalized gut lymph node drainage dictates adaptive immune responses , 2019, Nature.

[46]  M. Hattori,et al.  Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis , 2019, Nature Microbiology.

[47]  Andrew R. Bassett,et al.  GPR35 promotes glycolysis, proliferation, and oncogenic signaling by engaging with the sodium potassium pump , 2019, Science Signaling.

[48]  T. McGaha,et al.  The Aryl Hydrocarbon Receptor: Connecting Immunity to the Microenvironment. , 2018, Trends in immunology.

[49]  Donovan H. Parks,et al.  AnnoTree: visualization and exploration of a functionally annotated microbial tree of life , 2018, bioRxiv.

[50]  T. Kanai,et al.  Toll-Like Receptor 7 Agonist–Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells , 2018, Cellular and molecular gastroenterology and hepatology.

[51]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[52]  M. Bissonnette,et al.  Tryptophan Metabolism through the Kynurenine Pathway is Associated with Endoscopic Inflammation in Ulcerative Colitis. , 2018, Inflammatory bowel diseases.

[53]  G. Weinstock,et al.  Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. , 2018, Cell metabolism.

[54]  Clare Baecher-Allan,et al.  Multiple Sclerosis: Mechanisms and Immunotherapy , 2018, Neuron.

[55]  Yu-Wei Wu ezTree: an automated pipeline for identifying phylogenetic marker genes and inferring evolutionary relationships among uncultivated prokaryotic draft genomes , 2018, BMC Genomics.

[56]  K. Berer,et al.  Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice , 2017, Proceedings of the National Academy of Sciences.

[57]  Stephen L. Hauser,et al.  Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models , 2017, Proceedings of the National Academy of Sciences.

[58]  N. Hamouda,et al.  G protein‐coupled receptor 35 contributes to mucosal repair in mice via migration of colonic epithelial cells , 2017, Pharmacological research.

[59]  M. Hattori,et al.  Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillus murinus in Mice. , 2017, Cell reports.

[60]  Robin Patel,et al.  Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease. , 2017, Cell reports.

[61]  A. Mangalam,et al.  Gut microbiome in multiple sclerosis: The players involved and the roles they play , 2017, Gut microbes.

[62]  T. Honda,et al.  Regulatory T cells with superior immunosuppressive capacity emigrate from the inflamed colon to draining lymph nodes , 2017, Mucosal Immunology.

[63]  Hailiang Huang,et al.  Fine-mapping inflammatory bowel disease loci to single variant resolution , 2017, Nature.

[64]  Geet Duggal,et al.  Salmon: fast and bias-aware quantification of transcript expression using dual-phase inference , 2017, Nature Methods.

[65]  Bruce V. Taylor,et al.  Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression , 2017, Scientific Reports.

[66]  Johannes U. Mayer,et al.  Tissue-Specific Differentiation of Colonic Macrophages Requires TGFβ Receptor Mediated Signalling , 2017, Mucosal Immunology.

[67]  C. Benoist,et al.  Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice , 2016, Proceedings of the National Academy of Sciences.

[68]  B. Stockinger,et al.  Autoimmune Renal Disease Is Exacerbated by S1P-Receptor-1-Dependent Intestinal Th17 Cell Migration to the Kidney , 2016, Immunity.

[69]  M. Kanehisa,et al.  BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. , 2016, Journal of molecular biology.

[70]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. , 2015, F1000Research.

[71]  M. Hattori,et al.  Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells , 2015, Cell.

[72]  M. Hattori,et al.  Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters , 2015, PloS one.

[73]  Liza Konnikova,et al.  Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells , 2015, Science.

[74]  T. Hohl,et al.  Intestinal Monocyte-Derived Macrophages Control Commensal-Specific Th17 Responses. , 2015, Cell reports.

[75]  L. Vécsei,et al.  Kynurenines and Multiple Sclerosis: The Dialogue between the Immune System and the Central Nervous System , 2015, International journal of molecular sciences.

[76]  R. Morita,et al.  Smad2 and Smad3 Inversely Regulate TGF-β Autoinduction in Clostridium butyricum-Activated Dendritic Cells. , 2015, Immunity.

[77]  M. Rovaris,et al.  Indoleamine 2,3 Dioxygenase (IDO) Expression and Activity in Relapsing- Remitting Multiple Sclerosis , 2015, PloS one.

[78]  Rob Knight,et al.  Analysis of composition of microbiomes: a novel method for studying microbial composition , 2015, Microbial ecology in health and disease.

[79]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[80]  G. Milligan,et al.  G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease , 2015, Front. Pharmacol..

[81]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[82]  Shane J. Neph,et al.  A comparative encyclopedia of DNA elements in the mouse genome , 2014, Nature.

[83]  Torsten Seemann,et al.  Prokka: rapid prokaryotic genome annotation , 2014, Bioinform..

[84]  G. Friedlander,et al.  Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. , 2014, Immunity.

[85]  J. Yates,et al.  Microglia Promote Learning-Dependent Synapse Formation through Brain-Derived Neurotrophic Factor , 2013, Cell.

[86]  M. Tomita,et al.  Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells , 2013, Nature.

[87]  W. Garrett,et al.  The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis , 2013, Science.

[88]  J. Goverman,et al.  Modeling the heterogeneity of multiple sclerosis in animals. , 2013, Trends in immunology.

[89]  M. Hattori,et al.  Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota , 2013, Nature.

[90]  T. Hibi,et al.  A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. , 2013, Cell host & microbe.

[91]  Susan Holmes,et al.  phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data , 2013, PloS one.

[92]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[93]  K. Adachi,et al.  Sphingosine 1-Phosphate Receptor 1 as a Useful Target for Treatment of Multiple Sclerosis , 2012, Pharmaceuticals.

[94]  Ye Fang,et al.  Multiple tyrosine metabolites are GPR35 agonists , 2012, Scientific Reports.

[95]  K. Berer,et al.  Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination , 2011, Nature.

[96]  S. Sakoda,et al.  The Lactic Acid Bacterium Pediococcus acidilactici Suppresses Autoimmune Encephalomyelitis by Inducing IL-10-Producing Regulatory T Cells , 2011, PloS one.

[97]  C. Constantinescu,et al.  Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS) , 2011, British journal of pharmacology.

[98]  F. Safavi,et al.  The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF , 2011, Nature Immunology.

[99]  S. Mazmanian,et al.  Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis , 2010, Proceedings of the National Academy of Sciences.

[100]  D. Kasper,et al.  A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease , 2010, Mucosal Immunology.

[101]  Dan R. Littman,et al.  Th17 and Regulatory T Cells in Mediating and Restraining Inflammation , 2010, Cell.

[102]  P. Legendre,et al.  Associations between species and groups of sites: indices and statistical inference. , 2009, Ecology.

[103]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[104]  R. Nurieva,et al.  Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. , 2009, Immunity.

[105]  Irah L. King,et al.  Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. , 2009, Blood.

[106]  Atsushi Miyawaki,et al.  Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice , 2008, Proceedings of the National Academy of Sciences.

[107]  B. Pulendran,et al.  Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17–producing T cell responses , 2007, Nature Immunology.

[108]  W. Turski,et al.  Astrocytic activation in relation to inflammatory markers during clinical exacerbation of relapsing-remitting multiple sclerosis , 2007, Journal of Neural Transmission.

[109]  J. Reagan,et al.  Kynurenic Acid as a Ligand for Orphan G Protein-coupled Receptor GPR35* , 2006, Journal of Biological Chemistry.

[110]  H. Weiner,et al.  Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells , 2006, Nature.

[111]  R. D. Hatton,et al.  Transforming growth factor-β induces development of the TH17 lineage , 2006, Nature.

[112]  P. Klivényi,et al.  Kynurenine metabolism in multiple sclerosis , 2005, Acta neurologica Scandinavica.

[113]  T. Macdonald,et al.  Immunity, Inflammation, and Allergy in the Gut , 2005, Science.

[114]  Steffen Jung,et al.  Blood monocytes consist of two principal subsets with distinct migratory properties. , 2003, Immunity.

[115]  R. Kastelein,et al.  Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain , 2003, Nature.

[116]  C. Sasakawa,et al.  vacB, a novel chromosomal gene required for expression of virulence genes on the large plasmid of Shigella flexneri , 1992, Journal of bacteriology.

[117]  R. Schwarcz,et al.  Blood–Brain Barrier Transport of Kynurenines: Implications for Brain Synthesis and Metabolism , 1991, Journal of neurochemistry.

[118]  Nicholas L. Bormann,et al.  scRepertoire: An R-based toolkit for single-cell immune receptor analysis. , 2020, F1000Research.

[119]  R. Gold,et al.  Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. , 2016, Immunity.