Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow

We present a numerical study of the spinodal decomposition of a binary fluid undergoing shear flow using the advective Cahn-Hilliard equation, a stiff, nonlinear, parabolic equation characterized by the presence of fourth-order spatial derivatives. Our numerical solution procedure is based on isogeometric analysis, an approximation technique for which basis functions of high-order continuity are employed. These basis functions allow us to directly discretize the advective Cahn-Hilliard equation without resorting to a mixed formulation. We present steady state solutions for rectangular domains in two-dimensions and, for the first time, in three-dimensions. We also present steady state solutions for the two-dimensional Taylor-Couette cell. To enforce periodic boundary conditions in this curved domain, we derive and utilize a new periodic Bezier extraction operator. We present an extensive numerical study showing the effects of shear rate, surface tension, and the geometry of the domain on the phase evolution of the binary fluid. Theoretical and experimental results are compared with our simulations.

[1]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[2]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[3]  Andrea Hawkins-Daarud,et al.  Toward a predictive model of tumor growth , 2011 .

[4]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[5]  Héctor D. Ceniceros,et al.  Computation of multiphase systems with phase field models , 2002 .

[6]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[7]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[8]  Yinnian He,et al.  On large time-stepping methods for the Cahn--Hilliard equation , 2007 .

[9]  G. Burton Sobolev Spaces , 2013 .

[10]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[11]  Olga Wodo,et al.  Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem , 2011, J. Comput. Phys..

[12]  D. M. Anderson,et al.  DIFFUSE-INTERFACE METHODS IN FLUID MECHANICS , 1997 .

[13]  Chang Shu,et al.  Diffuse interface model for incompressible two-phase flows with large density ratios , 2007, J. Comput. Phys..

[14]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[15]  Jean-Luc Thiffeault,et al.  Bubbles and filaments: stirring a Cahn-Hilliard fluid. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[17]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[18]  C. M. Elliott,et al.  On the Cahn-Hilliard equation with degenerate mobility , 1996 .

[19]  M. Gurtin,et al.  TWO-PHASE BINARY FLUIDS AND IMMISCIBLE FLUIDS DESCRIBED BY AN ORDER PARAMETER , 1995, patt-sol/9506001.

[20]  Roy H. Stogner,et al.  C1 macroelements in adaptive finite element methods , 2007 .

[21]  J. Lowengrub,et al.  Quasi–incompressible Cahn–Hilliard fluids and topological transitions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[22]  Charles M. Elliott,et al.  A second order splitting method for the Cahn-Hilliard equation , 1989 .

[23]  E. B. Nauman,et al.  On spinodal decomposition of binary polymer blends under shear flows , 1997 .

[24]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[25]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[26]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[27]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[28]  Jorge L. Gonzalez-Velazquez,et al.  Effect of spinodal decomposition on the mechanical behavior of Fe–Cr alloys , 2010 .

[29]  J. Padding,et al.  Spinodal decomposition of asymmetric binary fluids in a micro-Couette geometry simulated with molecular dynamics. , 2008, The Journal of chemical physics.

[30]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[31]  高等学校計算数学学報編輯委員会編 高等学校計算数学学報 = Numerical mathematics , 1979 .

[32]  Jaime Peraire,et al.  A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations , 2008, J. Comput. Phys..

[33]  D. Jacqmin Regular Article: Calculation of Two-Phase Navier–Stokes Flows Using Phase-Field Modeling , 1999 .

[34]  O. Lebaigue,et al.  The second gradient method for the direct numerical simulation of liquid—vapor flows with phase change , 2001 .

[35]  E. Favvas,et al.  What is spinodal decomposition , 2008 .

[36]  Franck Boyer,et al.  A theoretical and numerical model for the study of incompressible mixture flows , 2002 .

[37]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[38]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[39]  M. Burger,et al.  The Willmore functional and instabilities in the Cahn-Hilliard equation , 2008 .

[40]  Yunxian Liu,et al.  A class of stable spectral methods for the Cahn-Hilliard equation , 2009, J. Comput. Phys..

[41]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[42]  Paul C. Fife,et al.  Models for phase separation and their mathematics. , 2000 .

[43]  Thomas J. R. Hughes,et al.  Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models , 2011, J. Comput. Phys..

[44]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[45]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[46]  Stig Larsson,et al.  THE CAHN-HILLIARD EQUATION , 2007 .

[47]  Dirk G. A. L. Aarts,et al.  Phase separating colloid polymer mixtures in shear flow , 2008 .

[48]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[49]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[50]  A. Wagner,et al.  Phase Separation under Shear in Two-dimensional Binary Fluids , 1999, cond-mat/9904033.

[51]  Moses,et al.  String phase in phase-separating fluids under shear flow. , 1995, Physical review letters.

[52]  T. Hashimoto,et al.  Shear‐induced homogenization of semidilute solution of polymer mixture. II. Composition dependence , 1993 .

[53]  Christophe Schlick,et al.  Accurate parametrization of conics by NURBS , 1996, IEEE Computer Graphics and Applications.

[54]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[55]  Krishna Garikipati,et al.  A discontinuous Galerkin method for the Cahn-Hilliard equation , 2006, J. Comput. Phys..

[56]  M E Cates,et al.  Binary fluids under steady shear in three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  James J. Feng,et al.  A diffuse-interface method for simulating two-phase flows of complex fluids , 2004, Journal of Fluid Mechanics.

[58]  J. Tinsley Oden,et al.  Goal‐oriented error estimation for Cahn–Hilliard models of binary phase transition , 2011 .

[59]  Hui-Ji Shi,et al.  Numerical simulation of the phase separation in binary lipid membrane under the effect of stationary shear flow. , 2008, Biophysical chemistry.

[60]  Chan,et al.  Effects of hydrodynamics on growth: Spinodal decomposition under uniform shear flow. , 1988, Physical review letters.