Persistence of Mixed and Non-intermediate Valence in the High-Pressure Structure of Silver(I,III) Oxide, AgO: A Combined Raman, X-ray Diffraction (XRD), and Density Functional Theory (DFT) Study.

The X-ray diffraction data collected up to ca. 56 GPa and the Raman spectra measured up to 74.8 GPa for AgO, or AgIAgIIIO2, which is a prototypical mixed valence (disproportionated) oxide, indicate that two consecutive phase transitions occur: the first-order phase transition occurs between 16.1 GPa and 19.7 GPa, and a second-order phase transition occurs at ca. 40 GPa. All polymorphic forms host the square planar [AgIIIO4] units typical of low-spin AgIII. The disproportionated Imma form persists at least up to 74.8 GPa, as indicated by Raman spectra. Theoretical hybrid density functional theory (DFT) calculations show that the first-order transition is phonon-driven. AgO stubbornly remains disproportionated up to at least 100 GPa-in striking contrast to its copper analogue-and the fundamental band gap of AgO is ∼0.3 eV at this pressure and is weakly pressure-dependent. Metallization of AgO is yet to be achieved.

[1]  M. Derzsi,et al.  Comment on "Pressure-induced structural and valence transition in AgO" by C. Hou, J. Botana, X. Zhang, X. Wang and M. Miao, Phys. Chem. Chem. Phys., 2016, 18, 15322. , 2016, Physical chemistry chemical physics : PCCP.

[2]  S. Bhattacharyya,et al.  High Pressure Experimental Studies on CuO: Indication of Re-entrant Multiferroicity at Room Temperature , 2016, Scientific Reports.

[3]  M. Miao,et al.  Pressure-induced structural and valence transition in AgO. , 2016, Physical chemistry chemical physics : PCCP.

[4]  Y. Fei,et al.  Equation of state of the high-pressure Fe3O4 phase and a new structural transition at 70 GPa , 2016 .

[5]  R. Hoffmann,et al.  AuO: Evolving from Dis- to Comproportionation and Back Again. , 2016, Inorganic chemistry.

[6]  Takahiro Ishikawa,et al.  Crystal Structure of the Superconducting Phase of Sulfur Hydride , 2015, Nature Physics.

[7]  A. P. Drozdov,et al.  Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system , 2015, Nature.

[8]  M. Derzsi,et al.  Towards a metallic quasi‐d9 system without copper: AgO at high pressure , 2015 .

[9]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[10]  Z. Mazej,et al.  The first example of a mixed valence ternary compound of silver with random distribution of Ag(I) and Ag(II) cations. , 2015, Dalton transactions.

[11]  M. Derzsi,et al.  Structures of late transition metal monoxides from Jahn-Teller instabilities in the rock salt lattice. , 2014, Physical review letters.

[12]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[13]  R. Hoffmann,et al.  The Close Relationships between the Crystal Structures of MO and MSO4 (M = Group 10, 11, or 12 Metal), and the Predicted Structures of AuO and PtSO4 , 2013 .

[14]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[15]  Marcin Wojdyr,et al.  Fityk: a general-purpose peak fitting program , 2010 .

[16]  J. Attfield,et al.  Pressure suppression of charge order without metallisation in Cs2Au2I6. , 2010, Chemical communications.

[17]  D. Scanlon,et al.  Electronic structure of mixed-valence silver oxide AgO from hybrid density-functional theory , 2010 .

[18]  Y. Akahama,et al.  Pressure calibration of diamond anvil Raman gauge to 410 GPa , 2010 .

[19]  A. Subrahmanyam,et al.  Physical properties of silver oxide thin films by pulsed laser deposition: effect of oxygen pressure during growth , 2009 .

[20]  F. Manjón,et al.  Pressure‐induced structural phase transitions in materials and earth sciences , 2009 .

[21]  M. Mezouar,et al.  High pressure-high temperature equations of state of neon and diamond , 2008 .

[22]  Roald Hoffmann,et al.  The chemical imagination at work in very tight places. , 2007, Angewandte Chemie.

[23]  N. Kojima,et al.  Single crystal X-ray diffraction study of a mixed-valence gold compound, Cs2AuIAuIIICl6 under high pressures up to 18 GPa: Pressure-induced phase transition coupled with gold valence transition , 2007 .

[24]  N. Kojima,et al.  A three‐dimensional bromo‐bridged mixed‐valence gold(I,III) compound, Cs2AuIAuIIIBr6 , 2005 .

[25]  M. Mezouar,et al.  Equations of state of six metals above 94 GPa , 2004 .

[26]  R. Ahuja,et al.  The structure of the metallic high-pressure Fe3O4 polymorph : experimental and theoretical study , 2003 .

[27]  Geoffrey I N Waterhouse,et al.  The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study , 2001 .

[28]  S. Stølen,et al.  Equation of state of magnetite and its high-pressure modification: Thermodynamics of the Fe-O system at high pressure , 2000 .

[29]  H. Mao,et al.  In situ structure determination of the high-pressure phase of Fe3O4 , 1999 .

[30]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[31]  K. Syassen,et al.  Crystal Structure of Cesium-V , 1998 .

[32]  N. Kojima,et al.  A Three‐Dimensional Iodo‐Bridged Mixed‐Valence Gold(I, III) Compound, Cs2AuIAuIIII6 , 1997 .

[33]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[34]  R. D. Groot,et al.  The electronic structure of the mixed valence compound Pb3O4 , 1997 .

[35]  James A Gucinski,et al.  New developments in very high rate silver oxide electrodes , 1997 .

[36]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[37]  M. Shumsky,et al.  Electrodeposition of Silver(II) Oxide Films , 1996 .

[38]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[39]  J. Weaver,et al.  SURFACE CHARACTERIZATION STUDY OF THE THERMAL DECOMPOSITION OF AGO , 1994 .

[40]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[41]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[42]  Zha,et al.  X-ray diffraction and equation of state of solid neon to 110 GPa. , 1989, Physical review. B, Condensed matter.

[43]  M. Monge,et al.  Diantimony tetraoxides revisited , 1988 .

[44]  J. H. Rose,et al.  Compressibility of solids , 1987 .

[45]  D. Jarosch Crystal structure refinement and reflectance measurements of hausmannite, Mn3O4 , 1987 .

[46]  P. Fischer,et al.  Structure and magnetic properties of tetragonal silver(I,III) oxide, AgO , 1986 .

[47]  M. Jansen,et al.  Ag3O4, the First Silver(II,III) Oxide , 1986 .

[48]  E. Krausz,et al.  Vibronic coupling model for calculation of mixed valence absorption profiles , 1978 .

[49]  G. C. Verschoor,et al.  Redetermination of the crystal structure of Cs2AuAuCl6 , 1974 .

[50]  Henry Taube,et al.  Binuclear complexes of ruthenium ammines , 1973 .

[51]  Henry Taube,et al.  Direct approach to measuring the Franck-Condon barrier to electron transfer between metal ions , 1969 .

[52]  Peter Day,et al.  Mixed Valence Chemistry-A Survey and Classification , 1968 .

[53]  B. Dickens The bonding in Pb3O4 and structural principles in stoichiometric lead oxides , 1965 .

[54]  J. A. McMillan Magnetic properties and crystalline structure of AgO , 1960 .

[55]  J. Corbett,et al.  The Lower Oxidation States of Gallium. III. The Constitution of Ga 2 Cl 4 and its Analogy with Ga(AlCl 4 ) , 1958 .

[56]  H. Stadelmaier,et al.  Higher Oxides of Silver , 1958 .

[57]  P. L. Bellon,et al.  Planar coordination of the group I B elements: crystal structure of Ag (II) oxide , 1958 .

[58]  F. Grønvold Crystal Structure of Uranium Oxide (U 3 O 8 ) , 1948 .

[59]  S. Gross The Crystal Structure of Pb3O4 , 1943 .

[60]  L. Pauling,et al.  The Crystal Structure of Cesium Aurous Auric Chloride, Cs2AuAuCl6, and Cesium Argentous Auric Chloride, Cs2AgAuCl6 , 1938 .

[61]  W. Bragg The Structure of Magnetite and the Spinels , 1915, Nature.