Sequential Monte Carlo in Bayesian Assessment of Contaminant Source Localization Based on the Sensors Concentration Measurements
暂无分享,去创建一个
Anna Wawrzynczak | Mieczyslaw Borysiewicz | Piotr Kopka | M. Borysiewicz | P. Kopka | A. Wawrzynczak
[1] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[2] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[3] Anna Wawrzynczak,et al. Bayesian-Based Methods for the Estimation of the Unknown Model’s Parameters in the Case of the Localization of the Atmospheric Contamination Source , 2012 .
[4] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[5] Nicolas W. Hengartner,et al. Stochastic event reconstruction of atmospheric contaminant dispersion using Bayesian inference , 2008 .
[6] Daniel Watzenig. Bayesian inference for inverse problems – statistical inversion , 2007, Elektrotech. Informationstechnik.
[7] Cincinnati. WORKBOOK OF ATMOSPHERIC DISPERSION ESTIMATES , 1970 .
[8] Anna Wawrzynczak,et al. Stochastic algorithm for estimation of the model's unknown parameters via Bayesian inference , 2012, 2012 Federated Conference on Computer Science and Information Systems (FedCSIS).
[9] Neil J. Gordon,et al. Editors: Sequential Monte Carlo Methods in Practice , 2001 .
[10] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[11] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.