Metabolism and energy generation in homoacetogenic clostridia.

Clostridium thermoautotrophicum and C. thermoaceticum contain an anaerobic electron transport chain. It involves hydrogen and carbon monoxide as electron donors and, presumably, methylenetetrahydrofolate as physiological electron acceptor. Cytochrome b554, cytochrome b559, menaquinone, a flavoprotein, ferredoxin and rubredoxin are parts of the electron transport chain. The electron transport results in the generation of a proton motive force which drives the synthesis of ATP or the uptake of amino acids.

[1]  Eva R. Kashket,et al.  Uncoupling by Acetic Acid Limits Growth of and Acetogenesis by Clostridium thermoaceticum , 1984, Applied and environmental microbiology.

[2]  J. Hugenholtz,et al.  Amino acid transport in membrane vesicles of Clostridium thermoautotrophicum. , 1990, FEMS microbiology letters.

[3]  J. Elliott,et al.  Isolation and characterization of an Fe,-S8 ferredoxin (ferredoxin II) from Clostridium thermoaceticum , 1982, Journal of bacteriology.

[4]  P. Mitchell Chemiosmotic coupling in energy transduction: A logical development of biochemical knowledge , 1972, Journal of bioenergetics.

[5]  L. Ljungdahl The autotrophic pathway of acetate synthesis in acetogenic bacteria. , 1986, Annual review of microbiology.

[6]  J. Hugenholtz,et al.  Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum , 1989, Journal of bacteriology.

[7]  Ralph S. Wolfe,et al.  Acetobacterium, a New Genus of Hydrogen-Oxidizing, Carbon Dioxide-Reducing, Anaerobic Bacteria , 1977 .

[8]  L. Ljungdahl,et al.  Isolation and characterization of two rubredoxins from Clostridium thermoaceticum. , 1980, Biochimica et biophysica acta.

[9]  J. G. Morris,et al.  The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 2. ATP synthetase activity. , 1979, European journal of biochemistry.

[10]  J. Terracciano,et al.  Membrane H+ Conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: Evidence for Electrogenic Na+/H+ Antiport in Clostridium thermoaceticum , 1987, Applied and environmental microbiology.

[11]  P. Schönheit,et al.  Sodium dependent acetate formation from CO2 in Peptostreptococcus products (strain Marburg). , 1989, FEMS microbiology letters.

[12]  L. Ljungdahl,et al.  Fermentation of Glucose, Fructose, and Xylose by Clostridium thermoaceticum: Effect of Metals on Growth Yield, Enzymes, and the Synthesis of Acetate from CO2 , 1973, Journal of bacteriology.

[13]  D. Clarke,et al.  The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 1. ATP phosphohydrolase activity. , 1979, European journal of biochemistry.

[14]  D. M. Ivey,et al.  Macromolecular organization of F1-ATPase isolated from Clostridium thermoaceticum as revealed by electron microscopy , 1986, Journal of bacteriology.

[15]  H. Drake,et al.  Differential effects of sodium on hydrogen- and glucose-dependent growth of the acetogenic bacterium Acetogenium kivui , 1990, Applied and environmental microbiology.

[16]  G. Gottschalk,et al.  Sodium dependence of acetate formation by the acetogenic bacterium Acetobacterium woodii , 1989, Journal of bacteriology.

[17]  L. Ljungdahl,et al.  Presence of Cytochrome and Menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum , 1975, Journal of bacteriology.

[18]  J. Hugenholtz,et al.  Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoautotrophicum , 1989, Journal of bacteriology.

[19]  E. Schneider,et al.  Bacterial adenosine 5'-triphosphate synthase (F1F0): purification and reconstitution of F0 complexes and biochemical and functional characterization of their subunits. , 1987, Microbiological reviews.

[20]  G. Gottschalk,et al.  Fermentation of fumarate and L-malate by Clostridium formicoaceticum , 1978, Journal of bacteriology.

[21]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[22]  G. Fuchs CO2 fixation in acetogenic bacteria: Variations on a theme , 1986 .

[23]  H. Drake Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum , 1982, Journal of bacteriology.

[24]  D. M. Ivey,et al.  Purification and characterization of the F1-ATPase from Clostridium thermoaceticum , 1986, Journal of bacteriology.

[25]  G. Ritter,et al.  A New Type of Glucose Fermentation by Clostridium thermoaceticum , 1942, Journal of bacteriology.

[26]  S. Ragsdale,et al.  The acetyl-CoA pathway: a newly discovered pathway of autotrophic growth , 1986 .

[27]  D. M. Ivey,et al.  Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes , 1987, Journal of bacteriology.

[28]  Wood Hg A study of carbon dioxide fixation by mass determination of the types of C13-acetate. , 1952 .

[29]  S. Ragsdale,et al.  The acetyl-CoA pathway of autotrophic growth , 1986 .

[30]  J. Hugenholtz,et al.  Amino acid transport in membrane vesicles ofClostridium thermoautotrophicum , 1990 .