Distance domination-critical graphs

Abstract A set D of vertices in a connected graph G is called a k -dominating set if every vertex in G − D is within distance k from some vertex of D . The k -domination number of G , γ k ( G ) , is the minimum cardinality over all k -dominating sets of G . A graph G is k -distance domination-critical if γ k ( G − x ) γ k ( G ) for any vertex x in G . This work considers properties of k -distance domination-critical graphs and establishes a best possible upper bound on the diameter of a 2-distance domination-critical graph G , that is, d ( G ) ≤ 3 ( γ 2 − 1 ) for γ 2 ≥ 2 .

[1]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[2]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[3]  G. Nemhauser,et al.  The k-Domination and k-Stability Problems on Sun-Free Chordal Graphs , 1984 .

[4]  Peter J. Slater,et al.  Fundamentals of domination in graphs , 1998, Pure and applied mathematics.

[5]  Ronald D. Dutton,et al.  Vertex domination-critical graphs , 1988, Networks.

[6]  S. Hedetniemi,et al.  Domination in graphs : advanced topics , 1998 .

[7]  David P. Sumner,et al.  Domination critical graphs , 1983, J. Comb. Theory, Ser. B.

[8]  Junming Xu,et al.  Theory and Application of Graphs , 2003, Network Theory and Applications.

[9]  Odile Favaron,et al.  The diameter of domination k-critical graphs , 1994, J. Graph Theory.