Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity

Design of a simple doubly clamped cantilever structure capable of localizing mechanical and optical energy at the nanoscale is presented. The optical design is based upon photonic crystal concepts in which simple nanoscale patterning of a sub-micron cross-section cantilever can result in strong optical localization to an effective optical mode volume of 4 cubic wavelengths in the material (4(λ=n)<sup>3</sup>). By placing two identical cantilevers within the near field of each other, strong optomechanical coupling can be realized for differential motion between the cantilevers. Current designs for thin film silicon nitride cantilevers indicate that such structures can simultaneously realize an optical Q-factor greater than 10<sup>6</sup>, motional mass m<inf>x</inf> ∼ 5 picograms, mechanical mode frequency Ω<inf>M</inf> ∼100 MHz, and an optomechanical coupling factor (g<inf>OM</inf> ≡ dω=dx = ω<inf>0</inf>/L<inf>OM</inf>) with effective length L<inf>OM</inf> ∼ 1 µm.

[1]  Oliver Benson,et al.  One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. , 2008, Nano letters.

[2]  Steven G. Johnson,et al.  Evanescent-wave bonding between optical waveguides. , 2005, Optics letters.

[3]  Hideo Mabuchi,et al.  Integration of fiber-coupled high-Q SiNx microdisks with atom chips , 2006, quant-ph/0605234.

[4]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[5]  Philippe Lalanne,et al.  Ultracompact silicon-on-insulator ridge-waveguide mirrors with high reflectance , 2006 .

[6]  L. Childress,et al.  Supporting Online Material for , 2006 .

[7]  Charles Santori,et al.  D ec 2 00 8 Coherent interference effects in a nano-assembled opticalcavity-QED system , 2008 .

[8]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[9]  M. Notomi,et al.  Optomechanical wavelength and energy conversion in high- double-layer cavities of photonic crystal slabs. , 2006, Physical review letters.

[10]  Steven G. Johnson,et al.  Perturbation theory for Maxwell's equations with shifting material boundaries. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  E. Wright,et al.  Theory of radiation-pressure-driven interferometers , 1985 .

[12]  P. Barclay,et al.  Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals , 2003 .

[13]  V. Sandoghdar,et al.  Diamond colour centres as a nanoscopic light source for scanning near‐field optical microscopy , 2001, Journal of microscopy.

[14]  Oskar Painter,et al.  Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. , 2005, Optics express.

[15]  P. Lalanne,et al.  Slow-wave effect and mode-profile matching in photonic crystal microcavities , 2005 .

[16]  Scott S. Verbridge,et al.  A megahertz nanomechanical resonator with room temperature quality factor over a million , 2008 .

[17]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[18]  P. Grangier,et al.  Nonclassical radiation from diamond nanocrystals , 2001, OFC 2001.

[19]  M. Notomi,et al.  Ultrahigh-Q nanocavity with 1D photonic gap. , 2008, Optics express.

[20]  Mani Hossein-Zadeh,et al.  Observation of optical spring effect in a microtoroidal optomechanical resonator. , 2007, Optics letters.

[21]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[22]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[23]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[24]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[25]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[26]  Michal Lipson,et al.  Ultrasmall mode volumes in dielectric optical microcavities. , 2005, Physical review letters.

[27]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[28]  A. Heidmann,et al.  Effective mass in quantum effects of radiation pressure , 1999, quant-ph/9901057.

[29]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[30]  David E. McClelland,et al.  Observation and characterization of an optical spring , 2004 .

[31]  T. Kenny,et al.  Attonewton force detection using ultrathin silicon cantilevers , 1997 .

[32]  Marc Sorel,et al.  Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI). , 2008, Optics express.

[33]  Marko Loncar,et al.  Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. , 2008, Optics express.

[34]  Scott S. Verbridge,et al.  High quality factor resonance at room temperature with nanostrings under high tensile stress , 2006 .

[35]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2007, Nature.

[36]  Roy H. Olsson,et al.  Microfabricated phononic crystal devices and applications , 2008 .

[37]  A. Sopczak Neutral Higgs boson mass constraints in the minimal supersymmetric standard model from searches in $\rm e^+e^-$ collisions , 1999 .

[38]  Philip Hemmer,et al.  Coherent population trapping of single spins in diamond under optical excitation. , 2006, Physical review letters.

[39]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[40]  Daniel Sigg,et al.  Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. , 2007, Physical review letters.

[41]  Steven G. Johnson,et al.  Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.