Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos.

The ability to rapidly assess microtubule number in 3D image stacks from electron tomograms is essential for collecting statistically meaningful data sets. Here we implement microtubule tracing using 3D template matching. We evaluate our results by comparing the automatically traced centerlines to manual tracings in a large number of electron tomograms of the centrosome of the early Caenorhabditis elegans embryo. Furthermore, we give a qualitative description of the tracing results for three other types of samples. For dual-axis tomograms, the automatic tracing yields 4% false negatives and 8% false positives on average. For single-axis tomograms, the accuracy of tracing is lower (16% false negatives and 14% false positives) due to the missing wedge in electron tomography. We also implemented an editor specifically designed for correcting the automatic tracing. Besides, this editor can be used for annotating microtubules. The automatic tracing together with a manual correction significantly reduces the amount of manual labor for tracing microtubule centerlines so that large-scale analysis of microtubule network properties becomes feasible.

[1]  K. Oegema,et al.  The C. elegans RSA Complex Localizes Protein Phosphatase 2A to Centrosomes and Regulates Mitotic Spindle Assembly , 2007, Cell.

[2]  B. Marsh TOWARD A 'VISIBLE CELL'… AND BEYOND , 2006 .

[3]  Bianca Habermann,et al.  An essential function of the C. elegans ortholog of TPX2 is to localize activated aurora A kinase to mitotic spindles. , 2005, Developmental cell.

[4]  Tian Shen,et al.  Segmentation and tracking of cytoskeletal filaments using open active contours , 2010, Cytoskeleton.

[5]  D. Mastronarde Dual-axis tomography: an approach with alignment methods that preserve resolution. , 1997, Journal of structural biology.

[6]  A. Hyman,et al.  Katanin Disrupts the Microtubule Lattice and Increases Polymer Number in C. elegans Meiosis , 2006, Current Biology.

[7]  Guenter P. Resch,et al.  Electron tomography reveals unbranched networks of actin filaments in lamellipodia , 2010, Nature Cell Biology.

[8]  K. Sandberg Methods for image segmentation in cellular tomography. , 2007, Methods in cell biology.

[9]  D. Mastronarde,et al.  Organization of interphase microtubules in fission yeast analyzed by electron tomography. , 2007, Developmental cell.

[10]  D. Mastronarde,et al.  Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Joachim M. Buhmann,et al.  Path-Based Clustering for Grouping of Smooth Curves and Texture Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  A. Hyman,et al.  Correlative light and electron microscopy of early Caenorhabditis elegans embryos in mitosis. , 2007, Methods in cell biology.

[13]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[14]  M. N. Lebbink,et al.  Template matching as a tool for annotation of tomograms of stained biological structures. , 2007, Journal of structural biology.

[15]  D. Kriegman,et al.  Automatic particle selection: results of a comparative study. , 2004, Journal of structural biology.

[16]  Friedrich Förster,et al.  Structure determination in situ by averaging of tomograms. , 2007, Methods in cell biology.

[17]  Qiang Ji,et al.  Automated extraction of fine features of kinetochore microtubules and plus-ends from electron tomography volume , 2006, IEEE Transactions on Image Processing.

[18]  Thomas Müller-Reichert,et al.  Cortical Constriction During Abscission Involves Helices of ESCRT-III–Dependent Filaments , 2011, Science.

[19]  Anthony A. Hyman,et al.  Centrosome Size Sets Mitotic Spindle Length in Caenorhabditis elegans Embryos , 2010, Current Biology.

[20]  D. Needleman,et al.  Automated identification of microtubules in cellular electron tomography. , 2010, Methods in cell biology.

[21]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[22]  Giovanni Cardone,et al.  Computational resources for cryo-electron tomography in Bsoft. , 2008, Journal of structural biology.

[23]  A. Roseman Particle finding in electron micrographs using a fast local correlation algorithm. , 2003, Ultramicroscopy.

[24]  Anthony A. Hyman,et al.  Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans , 2003, The Journal of cell biology.

[25]  Daniel Baum,et al.  Automated segmentation of electron tomograms for a quantitative description of actin filament networks. , 2012, Journal of structural biology.

[26]  Hans-Christian Hege,et al.  Tuner: Principled Parameter Finding for Image Segmentation Algorithms Using Visual Response Surface Exploration , 2011, IEEE Transactions on Visualization and Computer Graphics.

[27]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[28]  Martin Styner,et al.  Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms , 2009, Medical Image Anal..

[29]  E M Glaser,et al.  Neuron imaging with Neurolucida--a PC-based system for image combining microscopy. , 1990, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.