An Initial-value Method for Fredholm Integral Equations with Degenerate Kernels.
暂无分享,去创建一个
Robert E. Kalaba | Alan Schumitzky | R. Kalaba | A. Schumitzky | S. Ueno | H. Natsuyama | S. Ueno | H. H. Natsuyama
[1] D. Slepian. Some Asymptotic Expansions for Prolate Spheroidal Wave Functions , 1965 .
[2] G. Wing. On a method for obtaining bounds on the eigenvalues of certain integral equations , 1965 .
[3] R. Bellman,et al. Invariant Imbedding and Radiative Transfer in Slabs of Finite Thickness. , 1966 .
[4] H. Widom. EXTREME EIGENVALUES OF /^-DIMENSIONAL CONVOLUTION OPERATORS , 2010 .
[5] R. Bellman. Functional equations in the theory of dynamic programming. VII. A partial differential equation for the Fredholm resolvent , 1957 .
[6] R. Kalaba,et al. AN INITIAL VALUE METHOD FOR FREDHOLM INTEGRAL EQUATIONS OF CONVOLUTION TYPE , 1968 .
[7] R. Bellman,et al. Estimation of internal source distributions using external field measurements in radiative transfer , 1966 .
[8] Robert E. Kalaba,et al. AN INITIAL-VALUE METHOD SUITABLE FOR THE COMPUTATION OF CERTAIN FREDHOLM RESOLVENTS, , 1967 .
[9] W. Fuchs. On the eigenvalues of an integral equation arising in the theory of band-limited signals , 1964 .
[10] Richard Bellman,et al. NUMERICAL RESULTS FOR THE AUXILIARY EQUATION OF RADIATIVE TRANSFER , 1966 .
[11] V. Sobolev,et al. A treatise on radiative transfer. , 1963 .