Driving Rydberg-Rydberg transitions from a coplanar microwave waveguide.

The coherent interaction between ensembles of helium Rydberg atoms and microwave fields in the vicinity of a solid-state coplanar waveguide is reported. Rydberg-Rydberg transitions, at frequencies between 25 and 38 GHz, have been studied for states with principal quantum numbers in the range 30-35 by selective electric-field ionization. An experimental apparatus cooled to 100 K was used to reduce effects of blackbody radiation. Inhomogeneous, stray electric fields emanating from the surface of the waveguide have been characterized in frequency- and time-resolved measurements and coherence times of the Rydberg atoms on the order of 250 ns have been determined. These results represent a key element in the development of an experimental architecture to interface Rydberg atoms with solid-state devices.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.