Fatigue of Composite Materials and Substructures for Wind Turbine Blades

This report presents the major findings of the Montana State University Composite Materials Fatigue Program from 1997 to 2001, and is intended to be used in conjunction with the DOE/MSU Composite Materials Fatigue Database. Additions of greatest interest to the database in this time period include environmental and time under load effects for various resin systems; large tow carbon fiber laminates and glass/carbon hybrids; new reinforcement architectures varying from large strands to prepreg with well-dispersed fibers; spectrum loading and cumulative damage laws; giga-cycle testing of strands; tough resins for improved structural integrity; static and fatigue data for interply delamination; and design knockdown factors due to flaws and structural details as well as time under load and environmental conditions. The origins of a transition to increased tensile fatigue sensitivity with increasing fiber content are explored in detail for typical stranded reinforcing fabrics. The second focus of the report is on structural details which are prone to delamination failure, including ply terminations, skin-stiffener intersections, and sandwich panel terminations. Finite element based methodologies for predicting delamination initiation and growth in structural details are developed and validated, and simplified design recommendations are presented.

[1]  Douglas S. Cairns,et al.  Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures , 2004 .

[2]  John F. Mandell,et al.  Spectrum Fatigue Lifetime and Residual Strength for Fiberglass Laminates , 2002 .

[3]  Douglas S. Cairns,et al.  Analysis of a Composite Blade Design for the AOC 15/50 Wind Turbine using a Finite Element Model , 2001 .

[4]  Douglas S. Cairns,et al.  SPECTRUM FATIGUE LIFETIME AND RESIDUAL STRENGTH FOR FIBERGLASS LAMINATES IN TENSION , 2001 .

[5]  Douglas S. Cairns,et al.  Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing , 2000 .

[6]  Douglas S. Cairns,et al.  SELECTION OF FIBERGLASS MATRIX RESINS FOR INCREASED TOUGHNESS AND ENVIRONMENTAL RESISTANCE IN WIND TURBINE BLADES , 2000 .

[7]  Russell Lee Evertz INVESTIGATION OF CORE CLOSEOUTS IN FIBER-REINFORCED SANDWICH LAMINATES , 2000 .

[8]  Robert B. Morehead Fatigue of skin-stiffener intersections in composite wind turbine blade structures , 2000 .

[9]  Mei Li TEMPERATURE AND MOISTURE EFFECTS ON COMPOSITE MATERIALS FOR WIND TURBINE BLADES , 2000 .

[10]  Ian P Bond,et al.  Fatigue life prediction for GRP subjected to variable amplitude loading , 1999 .

[11]  Herbert J. Sutherland,et al.  On the Fatigue Analysis of Wind Turbines , 1999 .

[12]  Herbert J. Sutherland,et al.  Effects of Materials Parameters and Design Details on the Fatigue of Composite Materials for Wind Turbine Blades , 1999 .

[13]  Douglas S. Cairns,et al.  Modeling of resin transfer molding of composite materials with oriented unidirectional plies , 1999 .

[14]  Douglas S. Cairns,et al.  Selection of reinforcing fabrics for wind turbine blades , 1999 .

[15]  Daniel D. Samborsky,et al.  Fatigue of E-glass fiber reinforced composite materials and substructures , 1999 .

[16]  C. Lindenburg,et al.  Buckling Load Analysis Methods for Rotor Blades , 1999 .

[17]  Aaron Thomas Sears,et al.  Experimental validation of finite element techniques for buckling and postbuckling of composite sandwich shells , 1999 .

[18]  R. Orozco Effects of toughened matrix resins on composite materials for wind turbine blades , 1999 .

[19]  Douglas S. Cairns,et al.  Fracture of Skin/Stiffener Intersections in Composite Wind Turbine Structures , 1998 .

[20]  Douglas S. Cairns,et al.  EFFECTS OF STRUCTURAL DETAILS ON DELAMINATION AND FATIGUE LIFE OF FIBERGLASS LAMINATES , 1998 .

[21]  John F. Mandell,et al.  Fatigue of Composite Material Beam Elements Representative of Wind Turbine Blade Substructure , 1998 .

[22]  G. Winkel,et al.  Fatigue behaviour of fibreglass wind turbine blade material under variable amplitude loading , 1997 .

[23]  Douglas S. Cairns,et al.  Advanced wind turbine blade structure development program at Montana State University , 1997 .

[24]  Barry D. Davidson,et al.  Life Prediction Methodology for Composite Structures. Part II—Spectrum Fatigue , 1997 .

[25]  Barry D. Davidson,et al.  Life Prediction Methodology for Composite Structures. Part I—Constant Amplitude and Two-Stress Level Fatigue , 1997 .

[26]  M. Scott Effects of ply drops on the fatigue resistance of composite materials and structures , 1997 .

[27]  Ch.W. Kensche Method to Predict Fatigue Lifetimes of GFRP Wind Turbine Blades and Comparison with Experiments. , 1997 .

[28]  D. Samborsky,et al.  Fatigue resistant fiberglass laminates for wind turbine blades , 1996 .

[29]  I. S. Raju,et al.  Strain energy release rate formulae for skin-stiffener debond modeled with plate elements , 1996 .

[30]  Jinhua Bian Fiberglass composite tensile fatigue resistance : fiber surface damage analysis and fatigue resistant fiber coating , 1996 .

[31]  Herbert J. Sutherland,et al.  Application of the U.S. high cycle fatigue data base to wind turbine blade lifetime predictions , 1995 .

[32]  John F. Mandell,et al.  Fatigue of fiberglass beam substructures , 1995 .

[33]  D. W. Combs Design, analysis and testing of a wind turbine blade substructure , 1995 .

[34]  Guangxu Wei,et al.  High cycle longitudinal and transverse figure of unidirectional glass/polyester composites , 1995 .

[35]  Roderick H. Martin Composite Materials: Fatigue and Fracture: Fifth Volume , 1995 .

[36]  Andrew Jay Belinky,et al.  High cycle compressive fatigue of unidirectional glass/polyester performed at high frequency , 1994 .

[37]  Rena Qiong Pan,et al.  Fatigue behavior of glass fiber reinforced composite materials for wind turbine blades , 1994 .

[38]  Charles William Hedley Mold filling parameters in resin transfer molding of composites , 1994 .

[39]  C. Kassapoglou Stress Determination at Skin-Stiffener Interfaces of Composite Stiffened Panels Under Generalized Loading , 1993 .

[40]  James R. Reeder,et al.  A Bilinear Failure Criterion for Mixed-Mode Delamination , 1993 .

[41]  Modayur Shrinivas Three dimensional finite element analysis of matrix cracks in multidirectional composite laminates , 1993 .

[42]  Richard Francis Creed,et al.  High cycle tensile fatigue of unidirectional fiberglass composite tested at high frequency , 1993 .

[43]  John F. Mandell,et al.  Fatigue of fiberglass wind turbine blade materials , 1992 .

[44]  R. Reed Long term fatigue of glass fiber reinforced composite materials for wind turbine blades , 1991 .

[45]  J. Mandell,et al.  Effects of Porosity on Delamination of Resin-Matrix Composites , 1990 .

[46]  J Solin Methods for comparing fatigue lives for spectrum loading , 1990 .

[47]  Klaus Friedrich,et al.  Application of fracture mechanics to composite materials , 1989 .

[48]  M. W. Hyer,et al.  Influence of geometric nonlinearities on skin-stiffener interface stresses , 1992 .

[49]  David Cohen,et al.  Calculation of stresses and forces between the skin and stiffener in composite panels , 1987 .

[50]  W. Hwang,et al.  Cumulative Damage Models and Multi-Stress Fatigue Life Prediction , 1986 .

[51]  F. Mcgarry,et al.  Tensile fatigue of glass fibers and composites with conventional and surface compressed fibers , 1985 .

[52]  W. S. Johnson Delamination and Debonding of Materials , 1985 .

[53]  Aj Russell,et al.  Moisture and Temperature Effects on the Mixed-Mode Delamination Fracture of Unidirectional Graphite/Epoxy , 1985 .

[54]  C. Sun,et al.  The Use of Stitching to Suppress Delamination in Laminated Composites , 1985 .

[55]  D Broek ELEMENTARY ENGINEERING FRACTURE MECHANICS. 3RD EDITION , 1984 .

[56]  J. Mandell,et al.  Tensile Fatigue Performance of Glass Fiber Dominated Composites , 1981 .

[57]  Their Composites,et al.  Test methods and design allowables for fibrous composites , 1981 .

[58]  J. N. Yang,et al.  Effect of Load Sequence on the Statistical Fatigue of Composites , 1980 .

[59]  Z. Hashin,et al.  A CUMULATIVE DAMAGE THEORY OF FATIGUE FAILURE , 1978 .

[60]  M. Kanninen,et al.  A finite element calculation of stress intensity factors by a modified crack closure integral , 1977 .

[61]  Lj Broutman,et al.  A New Theory to Predict Cumulative Fatigue Damage in Fiberglass Reinforced Plastics , 1972 .

[62]  H. T. Corten,et al.  FRACTURE MECHANICS OF COMPOSITES , 1972 .

[63]  Donald F. Adams,et al.  Transverse Normal Loading of a Unidirectional Composite , 1967 .

[64]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .