Single-walled metal-organic nanotube built from a simple synthon.

A conformationally flexible triazole-carboxylic acid ligand derived from an L-amino acid, namely, 4 H-1,2,4-triazol-4-yl-acetic acid (αHGlytrz), has been exploited to synthesize a structurally diverse and functionally intriguing metal-organic framework with CuSiF6. The crystal structure reveals a novel single-walled metal-organic nanotube (SWMONT), namely, {[Cu3(μ3-OH)(H2O)3(Glytrz)3]⋅SiF6⋅8 H2O⋅X}∞ (1), (where X = disordered lattice water molecules) having a pore size as large as zeolites. Compound 1 was synthesized as crystals, as powder, or as layers by precipitation/electrodeposition. Mercury intrusion porosimetry demonstrates the ability of this material to store metallic mercury, after a pressure treatment, contrary to previous literature examples.

[1]  Watchareeya Kaveevivitchai,et al.  Metal−Organic Frameworks: Rise of the Ligands † , 2014 .

[2]  Diego A. Gómez-Gualdrón,et al.  Isoreticular series of (3,24)-connected metal-organic frameworks: Facile synthesis and high methane uptake properties , 2014 .

[3]  L. Interrante,et al.  Celebrating Twenty-Five Years of Chemistry of Materials , 2014 .

[4]  J. Fransaer,et al.  High pressure, high temperature electrochemical synthesis of metal–organic frameworks: films of MIL-100 (Fe) and HKUST-1 in different morphologies , 2013 .

[5]  Chao Zou,et al.  Assembly and post-modification of a metal-organic nanotube for highly efficient catalysis. , 2012, Journal of the American Chemical Society.

[6]  Herman Terryn,et al.  Electrochemical synthesis of thin HKUST-1 layers on copper mesh , 2012 .

[7]  K. Matyjaszewski,et al.  Design and preparation of porous polymers. , 2012, Chemical reviews.

[8]  P. Dastidar,et al.  Coordination polymers: what has been achieved in going from innocent 4,4'-bipyridine to bis-pyridyl ligands having a non-innocent backbone? , 2012, Chemical Society reviews.

[9]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[10]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[11]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[12]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[13]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[14]  Wenbin Lin,et al.  Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. , 2011, Accounts of chemical research.

[15]  Y. Garcia,et al.  Coordination polymers and metal organic frameworks derived from 1,2,4-triazole amino acid linkers , 2011 .

[16]  T. Luo,et al.  A journey in search of single-walled metal–organic nanotubes , 2011 .

[17]  J. Marchand-Brynaert,et al.  (Di)-aminoguanidine Functionalization through Transamination: An Avenue to an Auspicious Class of Supramolecular Synthons , 2011 .

[18]  Zhi Xu,et al.  Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes , 2011, Nanotechnology.

[19]  Jedeok Kim,et al.  Kinetically controlled fabrication of C60 1-dimensional crystals. , 2011, Journal of nanoscience and nanotechnology.

[20]  H. Okamoto,et al.  Bottom-up realization of a porous metal-organic nanotubular assembly. , 2011, Nature materials.

[21]  François-Xavier Coudert,et al.  Structural transitions in MIL-53 (Cr): view from outside and inside. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[22]  A. Kara,et al.  Household poisoning cases from mercury brought from school , 2011, European Journal of Pediatrics.

[23]  Marinela M. Dîrtu,et al.  Superlative Scaffold of 1,2,4-Triazole Derivative of Glycine Steering Linear Chain to a Chiral Helicate , 2011 .

[24]  J. Vittal,et al.  One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. , 2011, Chemical reviews.

[25]  O. Shekhah,et al.  MOF thin films: existing and future applications. , 2011, Chemical Society reviews.

[26]  S. Xiao,et al.  A 4-connected anionic metal–organic nanotube constructed from indium isophthalate , 2010 .

[27]  Y. Yap,et al.  Recent advancements in boron nitride nanotubes. , 2010, Nanoscale.

[28]  C. Serre,et al.  Using pressure to provoke the structural transition of metal-organic frameworks. , 2010, Angewandte Chemie.

[29]  R. Custelcean,et al.  Anions in crystal engineering. , 2010, Chemical Society reviews.

[30]  Avelino Corma,et al.  Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures. , 2010, Angewandte Chemie.

[31]  Jiuxing Jiang,et al.  Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen , 2010 .

[32]  Marinela M. Dîrtu,et al.  Engineering Three-Dimensional Chains of Porous Nanoballs from a 1,2,4-Triazole-carboxylate Supramolecular Synthon , 2010 .

[33]  D. Eder Carbon nanotube-inorganic hybrids. , 2010, Chemical reviews.

[34]  T. Tseng,et al.  Self-assembled arrays of single-walled metal-organic nanotubes. , 2009, Angewandte Chemie.

[35]  Rafael García,et al.  Photocatalytic removal of methylmercury assisted by UV-A irradiation , 2009 .

[36]  J. Simmons,et al.  A nanotubular metal-organic framework with permanent porosity: structure analysis and gas sorption studies. , 2009, Chemical communications.

[37]  Jan Fransaer,et al.  Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis , 2009 .

[38]  T. Uemura,et al.  Polymerization reactions in porous coordination polymers. , 2009, Chemical Society reviews.

[39]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[40]  Anthony L. Spek,et al.  Structure validation in chemical crystallography , 2009, Acta crystallographica. Section D, Biological crystallography.

[41]  X. You,et al.  An infinite photoluminescent coordination nanotube [CuSCN(L)]·(DMF)0.5 , 2009 .

[42]  Daofeng Sun,et al.  A metal-organic nanotube exhibiting reversible adsorption of (H2O)12 cluster. , 2008, Journal of the American Chemical Society.

[43]  Dan Li,et al.  A metal-organic framework containing discrete single-walled nanotubes based on curved trinuclear [Cu3(micro3-O)(micro-OH)(triazolate)2]+ building blocks. , 2008, Chemical communications.

[44]  P. Dastidar,et al.  Ligating topology and counter anion controlled formation of discrete metallo-macrocycle and 2D corrugated sheet in coordination compounds derived from a bis-pyridyl-bis-amide ligand and Cd (II)salts , 2008 .

[45]  R. Suri,et al.  Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater. , 2007, Journal of hazardous materials.

[46]  S. Batten,et al.  Temperature-dependent synthesis of metal-organic frameworks based on a flexible tetradentate ligand with bidirectional coordination donors. , 2007, Journal of the American Chemical Society.

[47]  R. Vieira,et al.  Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. , 2006, Water research.

[48]  Amitava Das,et al.  From diamondoid network to (4,4) net: effect of ligand topology on the supramolecular structural diversity. , 2005, Inorganic chemistry.

[49]  Toshimi Shimizu,et al.  Supramolecular nanotube architectures based on amphiphilic molecules. , 2005, Chemical reviews.

[50]  C. Serre,et al.  Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. , 2003, Chemical communications.

[51]  C. Su,et al.  Columnar supramolecular architecture self-assembled from S4-symmetric coordination nanotubes encapsulating neutral guest molecules. , 2003, Angewandte Chemie.

[52]  G. Calzaferri,et al.  Host-guest antenna materials. , 2003, Angewandte Chemie.

[53]  G. Calzaferri,et al.  Wirt-Gast-Antennenmaterialien , 2003 .

[54]  Susumu Kitagawa,et al.  Porous coordination-polymer crystals with gated channels specific for supercritical gases. , 2003, Angewandte Chemie.

[55]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[56]  Wei‐Yin Sun,et al.  Self-assembly of frameworks with specific topologies: construction and anion exchange properties of M3L2 architectures by tripodal ligands and silver(I) salts. , 2001, Chemistry.

[57]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[58]  Zhong-Yuan Zhou,et al.  Ein kettenförmiges Silber(I)‐Koordinationspolymer mit nanometergroßen Röhren, die Anionen sowie Lösungsmittelmoleküle enthalten , 2000 .

[59]  Zhao,et al.  A Silver(I) Coordination Polymer Chain Containing Nanosized Tubes with Anionic and Solvent Molecule Guests This work was supported by the National Nature Science Foundation of China. M.C.H. thanks the Croucher Foundation of Hong Kong for financial support. , 2000, Angewandte Chemie.

[60]  Wei‐Yin Sun,et al.  Self-Assembly of the First Copper(II) Infinite 2D Network with Large Cavities Formed between the Two Adjacent Layers. , 1999, Inorganic chemistry.

[61]  L. Barbour,et al.  Controlling molecular self-organization: formation of nanometer-scale spheres and tubules , 1999, Science.

[62]  K. Biradha,et al.  Quantitative Formation of Coordination Nanotubes Templated by Rodlike Guests , 1999 .

[63]  S. Nagao,et al.  Guest-Induced Organization of a Three-Dimensional Palladium(II) Cagelike Complex. A Prototype for "Induced-Fit" Molecular Recognition. , 1995, Journal of the American Chemical Society.

[64]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[65]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[66]  F. Liu,et al.  A new strategy for the construction of a single-walled metal–organic nanotubular framework: utilizing “T”-shaped building unit with ligand modification , 2013 .

[67]  N. N. Adarsh,et al.  Crystal engineering of Fe(II) spin crossover coordination polymers derived from triazole or tetrazole ligands. , 2013, Chimia.

[68]  M. Kanai,et al.  These are not the final page numbers ! FULL PAPER , 2012 .

[69]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[70]  P. Steel,et al.  Self-assembly and X-ray structure of a ten-component,three-dimensional metallosupramolecular cage , 1997 .

[71]  F. Geyer,et al.  Journal of , 1993 .