Block preconditioning strategies for nonlinear viscous wave equations

Abstract In this paper, five block preconditioning strategies are proposed to solve a class of nonlinear viscous wave equations. Implicit time-integration techniques from low order to high order are considered exclusively including implicit Euler (IE1) method, backward differentiation formulas (BDF2, BDF3) as well as the Crank–Nicholson (CN2) scheme. The CN2 method demonstrates superior performance compared to the BDF2 scheme for the problems considered in this work. In addition, the third-order accurate BDF3 scheme is found to be the most efficient in terms of computational cost for a prescribed accuracy level. Moreover, the benefit of this scheme increases for tighter error tolerances.

[1]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[2]  Chengjian Zhang,et al.  Long time behavior of non-Fickian delay reaction–diffusion equations ☆ , 2012 .

[3]  Jan G. Verwer,et al.  Runge–Kutta methods and viscous wave equations , 2008, Numerische Mathematik.

[4]  B. Guo,et al.  Long Time Behavior of Strongly Damped Nonlinear Wave Equations , 1998 .

[5]  A. Griewank,et al.  Approximate inverse preconditionings for sparse linear systems , 1992 .

[6]  Mark D. Rotter,et al.  Using an ODE solver for a class of integro-differential systems , 2001 .

[7]  Yang Zhijian Viscous solutions on some nonlinear wave equations , 2005 .

[8]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[9]  Weizhong Dai,et al.  A compact finite-difference scheme for solving a one-dimensional heat transport equation at the microscale: 431 , 2001 .

[10]  Jim Douglas,et al.  Numerical methods for viscous and nonviscous wave equations , 2007 .

[11]  Carol S. Woodward,et al.  Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration , 2005 .

[12]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[13]  Weizhong Dai,et al.  An unconditionally stable finite difference scheme for solving a 3D heat transport equation in a sub-microscale thin film , 2002 .

[14]  C. Pao A mixed initial boundary-value problem arising in neurophysiology , 1975 .

[15]  Jun Zhang,et al.  Iterative solution and finite difference approximations to 3D microscale heat transport equation , 2001 .

[16]  Ralf Wolke,et al.  An explicit–implicit numerical approach for atmospheric chemistry–transport modeling , 1998 .

[17]  Zhiyue Zhang,et al.  A new high-order algorithm for a class of nonlinear evolution equation , 2008 .

[18]  Chengjian Zhang,et al.  A new fourth‐order numerical algorithm for a class of three‐dimensional nonlinear evolution equations , 2013 .

[19]  Mongi Benhamadou,et al.  Preconditioners for the resolution of the linear systems Ax=b , 2007, Appl. Math. Comput..

[20]  Marcus J. Grote,et al.  Parallel preconditioning and approximation inverses on the Connection Machine , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[21]  Zhiyue Zhang The multistep finite difference fractional steps method for a class of viscous wave equations , 2010 .

[22]  L. Kolotilina,et al.  On a family of two-level preconditionings of the incomplete block factorization type , 1986 .

[23]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[24]  Jun Zhang,et al.  Unconditionally Stable Finite Difference Scheme and Iterative Solution of 2D Microscale Heat Transport Equation , 2001 .

[25]  P. Brown,et al.  Reduced storage matrix methods in stiff ODE systems , 1989, Conference on Numerical Ordinary Differential Equations.

[26]  High accuracy finite difference scheme for three-dimensional microscale heat equation , 2008 .

[27]  Viktor P. Maslov,et al.  Nonlinear Wave Equations Perturbed by Viscous Terms , 2000 .

[28]  Y. Saad,et al.  Approximate inverse preconditioners for general sparse matrices , 1994 .

[29]  G. Ponce Global existence of small solutions to a class of nonlinear evolution equations , 1985 .

[30]  Jun Zhang,et al.  High accuracy stable numerical solution of 1D microscale heat transport equation , 2001 .

[31]  Chengjian Zhang,et al.  The extended one-leg methods for nonlinear neutral delay-integro-differential equations , 2009 .

[32]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[33]  P. Krutitskii The pseudohyperbolic problem arising in the dynamics of stratified rotating fluids , 1997 .