Bayesian Estimation of Hardness Ratios: Modeling and Computations

A commonly used measure to summarize the nature of a photon spectrum is the so-called hardness ratio, which compares the numbers of counts observed in different passbands. The hardness ratio is especially useful to distinguish between and categorize weak sources as a proxy for detailed spectral fitting. However, in this regime classical methods of error propagation fail, and the estimates of spectral hardness become unreliable. Here we develop a rigorous statistical treatment of hardness ratios that properly deals with detected photons as independent Poisson random variables and correctly deals with the non-Gaussian nature of the error propagation. The method is Bayesian in nature and thus can be generalized to carry out a multitude of source-population-based analyses. We verify our method with simulation studies and compare it with the classical method. We apply this method to real-world examples, such as the identification of candidate quiescent low-mass X-ray binaries in globular clusters and tracking the time evolution of a flare on a low-mass star.

[1]  Nicholas Rose Spatial Cluster Modelling , 2004, Technometrics.

[2]  M. Audard,et al.  Modeling an X-ray flare on Proxima Centauri: Evidence of two flaring loop components and of two heating mechanisms at work , 2003, astro-ph/0312267.

[3]  Martin C. Weisskopf,et al.  Chandra X-ray Observatory (CXO): overview , 1999, Astronomical Telescopes and Instrumentation.

[4]  Ž. Ivezić,et al.  Chandra Multiwavelength Project: Normal Galaxies at Intermediate Redshift , 2005, astro-ph/0512338.

[5]  K. Mason,et al.  New evidence on the nature of the soft X-ray source in AM Herculis from HEAO 1. , 1978 .

[6]  Analysis of energy spectra with low photon counts via Bayesian posterior simulation , 2001, astro-ph/0008170.

[7]  L. Bildsten,et al.  Crustal Heating and Quiescent Emission from Transiently Accreting Neutron Stars , 1998, astro-ph/9807179.

[8]  W. N. Brandt,et al.  DEEP EXTRAGALACTIC X-RAY SURVEYS , 2005 .

[9]  E. Feigelson,et al.  The Chandra Deep Survey of the Hubble Deep Field North Area. IV. An Ultradeep Image of the HDF-N , 2001, astro-ph/0102411.

[10]  J. Grindlay,et al.  New spectral classification technique for x-ray sources: Quantile analysis , 2004, astro-ph/0406463.

[11]  F. R. Harnden,et al.  Results from an extensive Einstein stellar survey. , 1981 .

[12]  David A. van Dyk Hierarchical Models, Data Augmentation, and Markov Chain Monte Carlo , 2003 .

[13]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. V. 1 Ms Source Catalogs , 2001, astro-ph/0108404.

[14]  G. J. Babu,et al.  Statistical Challenges in Modern Astronomy , 2004 .

[15]  V. Kashyap,et al.  Markov-Chain Monte Carlo Reconstruction of Emission Measure Distributions: Application to Solar Extreme-Ultraviolet Spectra , 1998 .

[16]  Marc Audard,et al.  Flare Heating in Stellar Coronae , 2002 .

[17]  H. Tananbaum,et al.  Hard X-Ray-emitting Active Galactic Nuclei Selected by the Chandra Multiwavelength Project , 2004 .

[18]  S. Campana,et al.  The neutron stars of Soft X–ray Transients , 1993, astro-ph/9805079.

[19]  R. Rosner,et al.  ON STELLAR X-RAY EMISSION , 1985 .

[20]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[21]  James Liebert,et al.  X-ray studies of quasars with the Einstein observatory , 1979 .

[22]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[23]  H. Harney,et al.  Significance in gamma-ray astronomy - the Li & Ma problem in Bayesian statistics , 2004, astro-ph/0411660.

[24]  D. M. Alexander,et al.  The Chandra Deep Field North Survey. VI. The Nature of the Optically Faint X-Ray Source Population , 2001 .

[25]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[26]  P. Gondoin,et al.  XMM-Newton observatory. I. The spacecraft and operations , 2001 .

[27]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Statistics, Handle with Care: Detecting Multiple Model Components with the Likelihood Ratio Test , 2002, astro-ph/0201547.

[29]  Gutti Jogesh Babu,et al.  Statistical Challenges in Modern Astronomy IV , 1998 .

[30]  Hosung Kang,et al.  Highly Structured Models for Spectral Analysis in High-Energy Astrophysics , 2004 .

[31]  Giuseppina Fabbiano,et al.  The X-ray spectra of galaxies. II - Average spectral properties and emission mechanisms , 1992 .

[32]  Gutti Jogesh Babu,et al.  Statistical Challenges of Astronomy , 2003 .

[33]  S. Borgani,et al.  First Results from the X-Ray and Optical Survey of the Chandra Deep Field South , 2000, astro-ph/0007240.

[34]  H. Schnopper,et al.  The transient periodic X-ray source in Taurus, A0535+26 , 1976 .

[35]  J. E. Grindlay,et al.  Analysis of the Quiescent Low-Mass X-Ray Binary Population in Galactic Globular Clusters , 2003 .

[36]  Gutti Jogesh Babu,et al.  Statistical Challenges in Modern Astronomy , 1992 .