A Nonconforming Finite Element Method for the Stationary Navier--Stokes Equations
暂无分享,去创建一个
[1] G. A. Baker. Finite element methods for elliptic equations using nonconforming elements , 1977 .
[2] Max Gunzburger,et al. Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .
[3] J. Douglas,et al. Stabilized mixed methods for the Stokes problem , 1988 .
[4] M. Crouzeix,et al. Nonconforming finite elements for the Stokes problem , 1989 .
[5] M. Fortin,et al. A non‐conforming piecewise quadratic finite element on triangles , 1983 .
[6] A nonstandard finite element method for the stationary two-dimensional Navier-Stokes equations☆ , 1987 .
[7] Thomas J. R. Hughes,et al. The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .
[8] 川口 光年,et al. O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .
[9] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[10] S. Agmon,et al. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .
[11] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[12] Michael Vogelius,et al. Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .
[13] O. A. Ladyzhenskai︠a︡,et al. Linear and quasilinear elliptic equations , 1968 .
[14] L. R. Scott,et al. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .
[15] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[16] Max Gunzburger,et al. On conforming finite element methods for the inhomogeneous stationary Navier-Stokes equations , 1983 .
[17] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[18] Franco Brezzi Michel Fortin,et al. Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .
[19] Ohannes A. Karakashian,et al. Piecewise solenoidal vector fields and the Stokes problem , 1990 .
[20] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[21] T. Hughes,et al. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .
[22] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[23] P. Jamet,et al. Numerical solution of the stationary Navier-Stokes equations by finite element methods , 1973, Computing Methods in Applied Sciences and Engineering.
[24] R. Temam. Navier-Stokes Equations , 1977 .
[25] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[26] Philippe G. Ciarlet,et al. The Finite Element Method for Elliptic Problems. , 1981 .