A Nonconforming Finite Element Method for the Stationary Navier--Stokes Equations

Approximations to solutions of the inhomogeneous boundary value problem for the Navier--Stokes equations are constructed via a nonstandard finite element method. The velocity field is approximated using piecewise solenoidal functions that are totally discontinuous across interelement boundaries but which are pointwise divergence free on each element. The pressure is approximated by C0 functions. Optimal rates of convergence results are obtained requiring only local quasi-uniformity assumptions on the meshes.

[1]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[2]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[3]  J. Douglas,et al.  Stabilized mixed methods for the Stokes problem , 1988 .

[4]  M. Crouzeix,et al.  Nonconforming finite elements for the Stokes problem , 1989 .

[5]  M. Fortin,et al.  A non‐conforming piecewise quadratic finite element on triangles , 1983 .

[6]  A nonstandard finite element method for the stationary two-dimensional Navier-Stokes equations☆ , 1987 .

[7]  Thomas J. R. Hughes,et al.  The Stokes problem with various well-posed boundary conditions - Symmetric formulations that converge for all velocity/pressure spaces , 1987 .

[8]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[9]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[10]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[11]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[12]  Michael Vogelius,et al.  Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .

[13]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[14]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[15]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[16]  Max Gunzburger,et al.  On conforming finite element methods for the inhomogeneous stationary Navier-Stokes equations , 1983 .

[17]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[18]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[19]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[20]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[21]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[22]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[23]  P. Jamet,et al.  Numerical solution of the stationary Navier-Stokes equations by finite element methods , 1973, Computing Methods in Applied Sciences and Engineering.

[24]  R. Temam Navier-Stokes Equations , 1977 .

[25]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[26]  Philippe G. Ciarlet,et al.  The Finite Element Method for Elliptic Problems. , 1981 .