ATG16L1 autophagy pathway regulates BAX protein levels and programmed cell death

Previously we reported that adipocyte SNAP23 (synaptosome-associated protein of 23 kDa) deficiency blocks the activation of macroautophagy, leading to an increased abundance of BAX, a pro-death Bcl-2 family member, and activation and adipocyte cell death both in vitro and in vivo. Here, we found that knockdown of SNAP23 inhibited the association of the autophagosome regulators ATG16L1 and ATG9 compartments by nutrient depletion and reduced the formation of ATG16L1 membrane puncta. ATG16L1 knockdown inhibited autophagy flux and increased BAX protein levels by suppressing BAX degradation. The elevation in BAX protein had no effect on BAX activation or cell death in the nutrient-replete state. However, following nutrient depletion, BAX was activated with a concomitant induction of cell death. Co-immunoprecipitation analyses demonstrated that SNAP23 and ATG16L1 proteins form a stable complex independent of nutrient condition, whereas in the nutrient-depleted state, BAX binds to SNAP23 to form a ternary BAX–SNAP23–ATG16L1 protein complex. Taken together, these data support a model in which SNAP23 plays a crucial function as a scaffold for ATG16L1 necessary for the suppression of BAX activation and induction of the intrinsic cell death program.

[1]  Richard H. Scheller,et al.  SNARE-mediated membrane fusion , 2001, Nature Reviews Molecular Cell Biology.

[2]  C. Carr,et al.  Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1 , 2012, Molecular biology of the cell.

[3]  J. Mima,et al.  Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion , 2014, Scientific Reports.

[4]  D. Rubinsztein,et al.  Autophagosome Precursor Maturation Requires Homotypic Fusion , 2011, Cell.

[5]  Xuejun Jiang,et al.  SNARE Proteins Are Required for Macroautophagy , 2011, Cell.

[6]  Daniel J. Klionsky,et al.  An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis , 2010, The Journal of cell biology.

[7]  R. Kitsis,et al.  SNAP23 regulates BAX-dependent adipocyte programmed cell death independently of canonical macroautophagy , 2018, The Journal of clinical investigation.

[8]  T. Noda,et al.  Atg9A trafficking through the recycling endosomes is required for autophagosome formation , 2016, Journal of Cell Science.

[9]  M. Mayer,et al.  An Extended Helical Conformation in Domain 3a of Munc18-1 Provides a Template for SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Complex Assembly* , 2014, The Journal of Biological Chemistry.

[10]  V. Deretic,et al.  Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs , 2019, The EMBO journal.

[11]  S. Lev,et al.  Tethering the assembly of SNARE complexes. , 2014, Trends in cell biology.

[12]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[13]  R. Schönherr,et al.  COG complexes form spatial landmarks for distinct SNARE complexes , 2013, Nature Communications.

[14]  T. Südhof,et al.  How Tlg2p/syntaxin 16 'snares’ Vps45 , 2002, The EMBO journal.

[15]  D. Rubinsztein,et al.  Methods to analyze SNARE-dependent vesicular fusion events that regulate autophagosome biogenesis , 2015, Methods.

[16]  A. Merz,et al.  Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex , 2012, Molecular biology of the cell.

[17]  N. Mizushima,et al.  YKT6 as a second SNARE protein of mammalian autophagosomes , 2018, Autophagy.

[18]  D. Klionsky,et al.  Autophagosome biogenesis requires SNAREs , 2011, Autophagy.

[19]  J. Pessin,et al.  Mapping of R-SNARE function at distinct intracellular GLUT4 trafficking steps in adipocytes , 2008, The Journal of cell biology.

[20]  G. van den Bogaart,et al.  Visualizing Intracellular SNARE Trafficking by Fluorescence Lifetime Imaging Microscopy , 2017, Journal of visualized experiments : JoVE.

[21]  Rie Ichikawa,et al.  Atg9 vesicles are an important membrane source during early steps of autophagosome formation , 2012, The Journal of cell biology.

[22]  J. Martinou,et al.  Bid Induces the Oligomerization and Insertion of Bax into the Outer Mitochondrial Membrane , 2000, Molecular and Cellular Biology.

[23]  D. Rubinsztein,et al.  Diverse Autophagosome Membrane Sources Coalesce in Recycling Endosomes , 2013, Cell.

[24]  R. Pfuetzner,et al.  Structural principles of SNARE complex recognition by the AAA+ protein NSF , 2018, eLife.

[25]  T. Südhof,et al.  Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Z. Porat,et al.  SNARE priming is essential for maturation of autophagosomes but not for their formation , 2017, Proceedings of the National Academy of Sciences.

[27]  P. Marrack,et al.  Elucidation of some Bax conformational changes through crystallization of an antibody–peptide complex , 2007, Cell Death and Differentiation.

[28]  Ravi Manjithaya,et al.  A reversible autophagy inhibitor blocks autophagosome–lysosome fusion by preventing Stx17 loading onto autophagosomes , 2019, Molecular biology of the cell.

[29]  J. Borén,et al.  SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity , 2007, Nature Cell Biology.

[30]  Y. Ouyang,et al.  SNARE zippering requires activation by SNARE-like peptides in Sec1/Munc18 proteins , 2018, Proceedings of the National Academy of Sciences.

[31]  D. Fasshauer,et al.  The SM protein Sly1 accelerates assembly of the ER–Golgi SNARE complex , 2014, Proceedings of the National Academy of Sciences.

[32]  D. Klionsky,et al.  Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. , 2008, Molecular biology of the cell.

[33]  Osamu Takeuchi,et al.  Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. , 2009, Molecular cell.

[34]  D. Rubinsztein,et al.  Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation , 2013, FEBS letters.

[35]  G. Takaesu,et al.  Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy , 2012, Nature Structural &Molecular Biology.

[36]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[37]  D. Rubinsztein,et al.  ATG16L1 meets ATG9 in recycling endosomes , 2013, Autophagy.

[38]  D. Klionsky,et al.  An overview of macroautophagy in yeast. , 2016, Journal of molecular biology.

[39]  E. Jorgensen,et al.  Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE–Sec1/Munc18 membrane fusion complex , 2010, Proceedings of the National Academy of Sciences.

[40]  C. Viret,et al.  Regulation of Syntaxin 17 during Autophagosome Maturation. , 2019, Trends in cell biology.

[41]  L. Collinson,et al.  Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy , 2012, Molecular biology of the cell.

[42]  C. Kraft,et al.  Ykt6 mediates autophagosome-vacuole fusion , 2018, Molecular & cellular oncology.

[43]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.