Analysis of Two-Player Quantum Games in an EPR Setting Using Clifford's Geometric Algebra

The framework for playing quantum games in an Einstein-Podolsky-Rosen (EPR) type setting is investigated using the mathematical formalism of geometric algebra (GA). The main advantage of this framework is that the players' strategy sets remain identical to the ones in the classical mixed-strategy version of the game, and hence the quantum game becomes a proper extension of the classical game, avoiding a criticism of other quantum game frameworks. We produce a general solution for two-player games, and as examples, we analyze the games of Prisoners' Dilemma and Stag Hunt in the EPR setting. The use of GA allows a quantum-mechanical analysis without the use of complex numbers or the Dirac Bra-ket notation, and hence is more accessible to the non-physicist.

[1]  Chris Doran,et al.  Analysis of One and Two Particle Quantum Systems using Geometric Algebra , 2002 .

[2]  Analysis of 1 and 2 Particle Quantum Systems using Geometric Algebra , 2001, quant-ph/0106055.

[3]  Taksu Cheon,et al.  Constructing quantum games from nonfactorizable joint probabilities. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Derek Abbott,et al.  Constructing quantum games from symmetric non-factorizable joint probabilities , 2010, 1005.5262.

[5]  Adrian P. Flitney,et al.  Nash equilibria in quantum games with generalized two-parameter strategies , 2007 .

[6]  A. H. Toor,et al.  Generalized quantization scheme for two-person non-zero sum games , 2004 .

[7]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[8]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .

[9]  R. Vilela Mendes The Quantum Ultimatum Game , 2005, Quantum Inf. Process..

[10]  Derek Abbott,et al.  Advantage of a quantum player over a classical one in 2 × 2 quantum games , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  N. Mermin Quantum mysteries revisited , 1990 .

[12]  P. Szekeres A Course in Modern Mathematical Physics : Groups, Hilbert Space and Differential Geometry , 2004 .

[13]  J. Christian Restoring Local Causality and Objective Reality to the Entangled Photons , 2011, 1106.0748.

[14]  Jiangfeng Du,et al.  Experimental realization of quantum games on a quantum computer. , 2001, Physical Review Letters.

[15]  Alice,et al.  An Introduction to Quantum Game Theory , 2005 .

[16]  D. Abbott,et al.  Probabilistic analysis of three-player symmetric quantum games played using the Einstein–Podolsky–Rosen–Bohm setting , 2008, 0804.2304.

[17]  Steven A. Bleiler A Formalism for Quantum Games and an Application , 2008 .

[18]  Luca Marinatto,et al.  A quantum approach to static games of complete information , 2000 .

[19]  Peter Szekeres A Course in Modern Mathematical Physics: Groups , 2004 .

[20]  Azhar Iqbal,et al.  Playing games with EPR-type experiments , 2005, quant-ph/0507152.

[21]  A. Shimony,et al.  Bell's theorem. Experimental tests and implications , 1978 .

[22]  Stefan Weigert,et al.  Quantum correlation games , 2003 .

[23]  Disproof of Bell's Theorem by Clifford Algebra Valued Local Variables , 2007, quant-ph/0703179.

[24]  Derek Abbott,et al.  Quantum Matching Pennies Game , 2008, 0807.3599.

[25]  Qiang Li,et al.  A novel clustering algorithm based on quantum games , 2008, ArXiv.

[26]  Derek Abbott,et al.  Analyzing Three-Player Quantum Games in an EPR Type Setup , 2010, PloS one.

[27]  Timothy F. Havel,et al.  A Bloch-sphere-type model for two qubits in the geometric algebra of a 6D Euclidean vector space , 2004, SPIE Defense + Commercial Sensing.

[28]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[29]  C. Doran,et al.  Geometric Algebra for Physicists , 2003 .

[30]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[31]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[32]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics , 1984 .

[33]  M. A. Lohe,et al.  An analysis of the quantum penny flip game using geometric algebra , 2009, 0902.4296.

[34]  Simon C. Benjamin,et al.  Multiplayer quantum games , 2001 .

[35]  David Hestenes New Foundations for Classical Mechanics , 1986 .

[36]  S. J. van Enk,et al.  Classical rules in quantum games , 2002 .

[37]  D. Abbott,et al.  Non-factorizable joint probabilities and evolutionarily stable strategies in the quantum prisoner's dilemma game , 2009, 0902.2889.

[38]  Taksu Cheon,et al.  Quantum game theory based on the Schmidt decomposition , 2007, quant-ph/0702167.

[39]  Jose L. Cereceda QUANTUM MECHANICAL PROBABILITIES AND GENERAL PROBABILISTIC CONSTRAINTS FOR EINSTEIN–PODOLSKY–ROSEN–BOHM EXPERIMENTS , 2000 .

[40]  M. K. Khan,et al.  The effect of quantum memory on quantum games , 2008, 0807.2501.

[41]  Ken Binmore,et al.  Game theory - a very short introduction , 2007 .

[42]  D. Abbott,et al.  Geometric Algebra: A natural representation of three-space , 2011, 1101.3619.

[43]  Taksu Cheon,et al.  Classical and quantum contents of solvable game theory on Hilbert space , 2006 .

[44]  Venzo de Sabbata,et al.  Geometric Algebra and Applications to Physics , 2006 .

[45]  Azhar Iqbal,et al.  Evolutionarily stable strategies in quantum games , 2000 .

[46]  Taksu Cheon Game Theory Formulated on Hilbert Space , 2006 .

[47]  Daniël Wedema Games And Information An Introduction To Game Theory 3rd Edition , 2011 .

[48]  Gary M. Sandquist,et al.  Dynamical Systems and Microphysics , 1980 .

[49]  Edward W. Piotrowski,et al.  An Invitation to Quantum Game Theory , 2002, ArXiv.

[50]  Nobuyuki Imoto,et al.  Entangled states that cannot reproduce original classical games in their quantum version , 2004 .

[51]  Hong Guo,et al.  A survey of quantum games , 2008, Decis. Support Syst..

[52]  F. Selleri,et al.  Proposed Solutions of the Paradox , 1999 .

[53]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[54]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[55]  D. Abbott,et al.  Revisiting Special Relativity: A Natural Algebraic Alternative to Minkowski Spacetime , 2011, PloS one.

[56]  Hui Li,et al.  Entanglement enhanced multiplayer quantum games , 2002 .

[57]  Tsubasa Ichikawa,et al.  Duality, phase structures, and dilemmas in symmetric quantum games , 2006 .

[58]  Sahin Kaya Ozdemir,et al.  A necessary and sufficient condition to play games in quantum mechanical settings , 2007 .

[59]  A. Blaquiere Wave Mechanics as a Two-Player Game , 1980 .

[60]  Neil F. Johnson Playing a quantum game with a corrupted source , 2001 .

[61]  Sahin Kaya Ozdemir,et al.  Quantum and classical correlations between players in game theory , 2003 .

[62]  L. Vaidman Time-Symmetrized Counterfactuals in Quantum Theory , 1998 .

[63]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[64]  Derek Abbott,et al.  Quantum games with decoherence , 2004 .

[65]  L. Vaidman,et al.  Quantum advantages in classically defined tasks , 2008 .

[66]  A. Iqbal,et al.  Backwards-induction outcome in a quantum game , 2001, quant-ph/0111090.

[67]  Wayne C. Myrvold,et al.  Bell’s Theorem , 2011 .

[68]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[69]  Faisal Shah Khan,et al.  Three player, Two Strategy, Maximally Entangled Quantum Games , 2008 .

[70]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[71]  D. Meyer Quantum strategies , 1998, quant-ph/9804010.

[72]  E. W. Piotrowski,et al.  Quantum Market Games , 2001 .

[73]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[74]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .