The peptide hormone glucagon forms amyloid fibrils with two coexisting β-strand conformations

[1]  J. Saven,et al.  Nanotubes, Plates, and Needles: Pathway-Dependent Self-Assembly of Computationally Designed Peptides. , 2018, Biomacromolecules.

[2]  M. Hong,et al.  Efficient 15N-13C Polarization Transfer by Third-Spin-Assisted Pulsed Cross-Polarization Magic-Angle-Spinning NMR for Protein Structure Determination. , 2018, The journal of physical chemistry. B.

[3]  Hao Wu,et al.  The Structure of the Necrosome RIPK1-RIPK3 Core, a Human Hetero-Amyloid Signaling Complex , 2018, Cell.

[4]  M. Hong,et al.  Transport-Relevant Protein Conformational Dynamics and Water Dynamics on Multiple Time Scales in an Archetypal Proton Channel: Insights from Solid-State NMR. , 2018, Journal of the American Chemical Society.

[5]  Hualiang Jiang,et al.  Structure of the glucagon receptor in complex with a glucagon analogue , 2018, Nature.

[6]  R. McKay,et al.  Methylammonium lead chloride: A sensitive sample for an accurate NMR thermometer. , 2017, Journal of magnetic resonance.

[7]  A. Murzin,et al.  Cryo-EM structures of Tau filaments from Alzheimer’s disease brain , 2017, Nature.

[8]  C. Dobson,et al.  Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. , 2017, Annual review of biochemistry.

[9]  W. DeGrado,et al.  Water Distribution, Dynamics, and Interactions with Alzheimer's β-Amyloid Fibrils Investigated by Solid-State NMR. , 2017, Journal of the American Chemical Society.

[10]  S. Prusiner,et al.  Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study. , 2016, Journal of the American Chemical Society.

[11]  Peter Güntert,et al.  Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril , 2016, Proceedings of the National Academy of Sciences.

[12]  Sara Linse,et al.  Atomic Resolution Structure of Monomorphic Aβ42 Amyloid Fibrils. , 2016, Journal of the American Chemical Society.

[13]  Charles D. Schwieters,et al.  Solid-State NMR Structure of a Pathogenic Fibril of Full-Length Human α-Synuclein , 2016, Nature Structural &Molecular Biology.

[14]  R. Tycko Amyloid Polymorphism: Structural Basis and Neurobiological Relevance , 2015, Neuron.

[15]  M. Lill,et al.  Structural transitions and interactions in the early stages of human glucagon amyloid fibrillation. , 2015, Biophysical journal.

[16]  Woonghee Lee,et al.  NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy , 2014, Bioinform..

[17]  Jonathan K. Williams,et al.  Probing membrane protein structure using water polarization transfer solid-state NMR. , 2014, Journal of magnetic resonance.

[18]  R. DiMarchi,et al.  A glucagon analog chemically stabilized for immediate treatment of life-threatening hypoglycemia☆ , 2014, Molecular metabolism.

[19]  W. Ward,et al.  Mechanisms of glucagon degradation at alkaline pH , 2013, Peptides.

[20]  T. Polenova,et al.  Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. , 2013, Journal of magnetic resonance.

[21]  A. Bax,et al.  Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks , 2013, Journal of Biomolecular NMR.

[22]  R. Griffin,et al.  Efficient resonance assignment of proteins in MAS NMR by simultaneous intra- and inter-residue 3D correlation spectroscopy , 2013, Journal of Biomolecular NMR.

[23]  Mark P Mattson,et al.  Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils , 2012, Proceedings of the National Academy of Sciences.

[24]  M. Tschöp,et al.  The metabolic actions of glucagon revisited , 2010, Nature Reviews Endocrinology.

[25]  D. Otzen,et al.  A thermodynamic analysis of fibrillar polymorphism. , 2010, Biophysical chemistry.

[26]  Daniel Erik Otzen,et al.  Glucagon fibril polymorphism reflects differences in protofilament backbone structure. , 2010, Journal of molecular biology.

[27]  Jesper Søndergaard Pedersen,et al.  A SAXS study of glucagon fibrillation. , 2009, Journal of molecular biology.

[28]  R. Griffin,et al.  Proton assisted recoupling and protein structure determination. , 2008, The Journal of chemical physics.

[29]  Richard D. Leapman,et al.  Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils , 2008, Proceedings of the National Academy of Sciences.

[30]  Sebastian Hiller,et al.  References and Notes Supporting Online Material Materials and Methods Figures S1 to S5 Table S1 References Solution Structure of the Integral Human Membrane Protein Vdac-1 in Detergent Micelles , 2022 .

[31]  D. Otzen,et al.  AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon , 2008, Nanotechnology.

[32]  D. Otzen,et al.  Early stages of amyloid fibril formation studied by liquid-state NMR: the peptide hormone glucagon. , 2008, Biophysical journal.

[33]  C. Jaroniec,et al.  Molecular conformation and dynamics of the Y145Stop variant of human prion protein in amyloid fibrils , 2008, Proceedings of the National Academy of Sciences.

[34]  Beat H. Meier,et al.  Amyloid Fibrils of the HET-s(218–289) Prion Form a β Solenoid with a Triangular Hydrophobic Core , 2008, Science.

[35]  D. Otzen,et al.  Glucagon amyloid-like fibril morphology is selected via morphology-dependent growth inhibition. , 2007, Biochemistry.

[36]  Heather T. McFarlane,et al.  Atomic structures of amyloid cross-β spines reveal varied steric zippers , 2007, Nature.

[37]  David Eisenberg,et al.  Atomic structures of amyloid cross-beta spines reveal varied steric zippers. , 2007, Nature.

[38]  D. Otzen,et al.  N- and C-terminal hydrophobic patches are involved in fibrillation of glucagon. , 2006, Biochemistry.

[39]  C. Yip,et al.  Amyloid fibrils of glucagon characterized by high-resolution atomic force microscopy. , 2006, Biophysical journal.

[40]  Jesper Søndergaard Pedersen,et al.  The changing face of glucagon fibrillation: structural polymorphism and conformational imprinting. , 2006, Journal of molecular biology.

[41]  R. Tycko,et al.  Experimental constraints on quaternary structure in Alzheimer's beta-amyloid fibrils. , 2006, Biochemistry.

[42]  Daniel E. Otzen,et al.  Protein drug stability: a formulation challenge , 2005, Nature Reviews Drug Discovery.

[43]  V. Muñoz Faculty Opinions recommendation of Context-dependent contributions of backbone hydrogen bonding to beta-sheet folding energetics. , 2004 .

[44]  Philip E. Dawson,et al.  Context-dependent contributions of backbone hydrogen bonding to β-sheet folding energetics , 2004, Nature.

[45]  A. Lesage,et al.  Water-protein interactions in microcrystalline crh measured by 1H-13C solid-state NMR spectroscopy. , 2003, Journal of the American Chemical Society.

[46]  Jie Liang,et al.  Position-dependence of stabilizing polar interactions of asparagine in transmembrane helical bundles. , 2003, Biochemistry.

[47]  F. Diederich,et al.  Interactions with aromatic rings in chemical and biological recognition. , 2003, Angewandte Chemie.

[48]  M. Baldus,et al.  Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids. , 2002, Journal of the American Chemical Society.

[49]  Kiyonori Takegoshi,et al.  13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR , 2001 .

[50]  R. Leapman,et al.  Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer's β-amyloid fibrils , 2000 .

[51]  William F. DeGrado,et al.  Asparagine-mediated self-association of a model transmembrane helix , 2000, Nature Structural Biology.

[52]  D. A. Dougherty,et al.  Cation-π interactions in structural biology , 1999 .

[53]  D. A. Dougherty,et al.  Cation-pi interactions in structural biology. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Griffin,et al.  Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems , 1998 .

[55]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[56]  J. Brange,et al.  Toward understanding insulin fibrillation. , 1997, Journal of pharmaceutical sciences.

[57]  Gottfried Otting,et al.  Proton exchange rates from amino acid side chains— implications for image contrast , 1996, Magnetic resonance in medicine.

[58]  A. W. Hing,et al.  Transferred-echo double-resonance NMR , 1992 .

[59]  L Serrano,et al.  Aromatic-aromatic interactions and protein stability. Investigation by double-mutant cycles. , 1991, Journal of molecular biology.

[60]  K Wüthrich,et al.  Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance. , 1983, Journal of molecular biology.

[61]  C Boesch,et al.  1H nuclear-magnetic-resonance studies of the molecular conformation of monomeric glucagon in aqueous solution. , 1978, European journal of biochemistry.

[62]  Ian J. Tickle,et al.  X-ray analysis of glucagon and its relationship to receptor binding , 1975, Nature.

[63]  A. Klug,et al.  Arrangement of subunits in flagellar microtubules. , 1974, Journal of cell science.

[64]  W. Gratzer,et al.  Formation and structure of gels and fibrils from glucagon. , 1969, European journal of biochemistry.

[65]  W. Gratzer,et al.  Conformational states of glucagon. , 1967, Biochemical and biophysical research communications.